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Abstract— This paper presents replay overshooting (RO), an
algorithm that uses properties of the classic extended Kalman fil-
ter (EKF) to learn nonlinear stochastic latent dynamics models
suitable for long-horizon prediction. Instead of hand-designing
an application-specific inference network to estimate the latent
state from observations, RO exploits the structure of the EKF
to reduce the complexity of the inference problem, improve the
training signal for the learned prediction model, and bolster
the interpretability of the induced latent manifold. We also
build upon overshooting methods commonly used to train
other deep prediction models to recover an effective learning
objective. We evaluate RO on two experiments: prediction
of synthetic video frames of a swinging motorized pendulum
and prediction of the planar position of various objects being
pushed by a real robotic manipulator (MIT Push Dataset). Our
model outperforms several other filter-based dynamics-learning
techniques on both quantitative and qualitative metrics.

I. INTRODUCTION
A. Motivation

Humans possess a remarkable ability to make accurate
long-horizon spatiotemporal predictions based on short ob-
servation periods, even in the presence of stochasticity. This
ability is so deeply biologically ingrained that the brain
processes information on dynamical prediction (e.g. position
or velocity) separately from other sensory information about
object identity (e.g. color or shape) [1], which suggests that
humans maintain complex internal latent dynamics models
to reason about motion. We are interested in an algorithm
for robots that replicates this ability in order to facilitate
effective decisionmaking in highly dynamical environments.

In state estimation theory, the aforementioned observation
period prior to prediction is known as filtering [2], wherein
we compute the distribution p(z; | w1.4—1,%1.4) over the
latent state at the current time ¢, z;, given the observation and
control sequences y1.; and u1.¢—1. If future observations are
available, we can use smoothing [2] to compute an even bet-
ter distribution p(z¢ | u1.7, y1.7), where T' > t. We refer to
filtering/smoothing as forms of posterior inference, wherein
we compute a posterior over z given some observations.

We are instead primarily concerned with prediction, where
we compute p(zr | wir—1,y1¢) for T > t. However,
since the state is unobservable, we must first use posterior
inference to compute a belief over past and current states
before we can accurately predict future ones. At best, we may
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Fig. 1: Comparison of replay overshooting (A) versus conventional
filter-based dynamics learning models (B). In RO, the dynamics
model participates strongly in posterior inference using Kalman
updates while in many competing methods, a separate inference
model is learned, weakening the dynamics training signal. RO also
features a second gradient path that exclusively trains the dynamics.

have a dynamics and observation model f(¢,z,u) and g(2)
at our disposal, but often, these are unknown and difficult to
analytically derive, motivating a data-driven approach.

Many existing works perform posterior inference by in-
troducing a third inference model like a recurrent neural
network [3], [4], [5]. However, with these methods, the
inference model has no intrinsic relation to the dynamics,
yet operations through it dominate the training procedure.
This detracts from the amount of training signal apportioned
to learning f, often failing to produce a good predictor.

To remedy this, we propose replay overshooting (RO), an
algorithm predicated on the structure of the extended Kalman
filter (EKF). The EKF is a state estimation algorithm that can
perform posterior inference with f and g alone, eliminating
the need for a separate inference network (Fig. 1) [6]. We
parameterize f and g as neural networks and optimize them
using variational inference, extracting f for standalone pre-
diction. RO reduces the complexity of the learning problem
and encourages a superior training signal for the dynamics
f, permitting accurate long-horizon predictions.

B. Related Work

The use of Bayesian filters to learn dynamical models
is well-studied. For example, the decades-old dual extended
Kalman filter treats the network weights as additional states
and runs two filters in parallel to jointly estimate the weights
and states using maximum likelihood estimation [7]. Other
works on state-space prediction have used alternative meth-
ods like dynamic factor analysis to estimate the posterior [8].



However, these methods suffer from poor scalability in model
size or observation dimension, which impedes the training of
large neural networks on high-dimensional data.

The later advent of the variational autoencoder (VAE)
[9] led to a resurgence of filter-based learning methods by
allowing tractable sampling-based posterior inference [10].
The deep Markov model learns an inference model gy (2 |
y1.¢) parameterized by a bi-RNN in addition to dynamics
and observation models [11], [3]. The deep variational
Bayes filter utilizes a reparameterization of the dynamics
to help improve gradient paths at the expense of losing the
expressiveness of models parameterized by neural networks
[4]. The Kalman variational autoencoder (KVAE) uses an
image autoencoder to embed observations and associate them
with a secondary latent state, learning a dynamics model on
both latent states and latent observations to disentangle the
dynamics from the higher-dimensional image data [12].

Many similar methods in the deep and reinforcement
learning literature exist for planning in latent spaces [13],
[14], [15], [5], [16]. One consistent idea presented in these
models is training for prediction by overshooting, or predict-
ing several steps into the future in order to produce a strong
training signal for the dynamics model. Replay overshooting
builds upon these ideas to jointly train a good dynamics
model as well as a strong inference model.

Finally, recent work also explores learning differentiable
filters for the sake of filtering alone [17], [18], [19]. We
found that simply training filters does not often yield good
predictors, since the learned models tend to strongly rely on
observed data rather than the dynamics model to facilitate
filtering, disincentivizing dynamics learning.

C. Contributions
The major contributions of this paper are

o replay overshooting, an EKF-based training procedure
for learning strong inference and prediction models;

o experiments demonstrating the superiority of replay
overshooting over several baselines in the literature;

« and an open-source codebase', including scripts for ex-
perimental duplication on presented datasets and more.

II. PRELIMINARIES
A. Bayesian Filtering and Smoothing

This section summarizes Bayesian filtering/smoothing. For
more detail and filter equations, we refer the reader to [2].
Consider the following discrete-time model with additive
noises wy, vy drawn from arbitrary distributions:

Zevr = f(t ze,u) +we, Y = g(2¢) + v (D

Let the dynamics be Markovian and the measurements be
conditionally independent given the state. The discrete-time
Bayesian filtering problem consists of recursively computing
a distribution over the current state given a history of
observations and control inputs p(z; | Y14, U1:t—1)-
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To recover this distribution, we assume knowledge of a
distribution over the predicted state given only prior mea-
surements p(z: | y1.4—1,u1.t—1). Then, by Bayes’ rule, the
measurement update yields:

_ p(yt | Zt)p(zt | yl:t71,U1;t71)
oy | z0)p(2 | yre—1, ure—1)dz,’
(2

and given a stochastic dynamics model p(z;11 | 2¢,ut), the
prediction update yields:

(2t | Y1t Ure—1)

P(Ze41 | Y1 ure) = /p(zm | ze, ue)p(2e | Y1:e, Ur:e—1)d2e,
3)

which becomes the prior for the next measurement update.
Though this computation is generally intractable, given a
prior distribution over the initial state p(z; ), the Kalman filter
allows the analytical recovery of a Gaussian distribution over
the state given a linear Gaussian system with Gaussian noise

Zip1 = Avze + Beug +wy,  ye = Crze + vy, 4

where w; ~ N(0,Q;) and v; ~ N(0, R;). The resulting
dynamics and observation distributions can be written
P(2er1 | 26, ut) = N (ze115 Arze + Brug, Q1)
p(ys | 26) = N (ys; Crze, Ry).
We can also directly recover a Gaussian over the observations

given the distribution over the latent state instead of a sample,
where the mean and covariance over z are denoted p?, X7:

(&)

plye | u7,52) = N(ys; Copiz , CiX2C] + Ry). (6)

This allows us to compute the likelihood of the observation
sequence without sampling-based techniques like the repa-
rameterization trick [2], [9]. Finally, the Kalman smoother
can also exactly recover the Gaussian smoothed posterior
(2 | yrr,urr) 21

For the general nonlinear system (1), the filter can at
best be made approximate. The most common technique is
the EKF, wherein f and ¢ are linearized, yielding modified
update equations resembling the standard updates. Since we
want to learn nonlinear models, this is our method of choice.

B. Learning Generative Time-Series Models

We choose to parameterize the dynamics and observation
models as the neural networks fy(t, 2z, u;) and g4(z;) re-
spectively. Following from variational inference [9], the log-
likelihood of a sequence of observations y;.7 conditioned on
control inputs uy.7 is lower bounded by the expression

log p(y1.7 | u1.r) >
EQ(Z1:T\y1;T7u1;T) [logp(yl:T | 2'1;T7U1:T)} @)
— Drr(q(zir |y, wrr) || p(2rr | wair)),

where ¢ is a variational distribution that approximately
represents the true posterior. Further, [3] proved that this
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lower bound can be further factorized as

log p(y1.7) Z

~

a(zelyrr) 10gp(Ye | 20)]

— Drr(q(z21 | y1:T) || p(21))
T
— Z]Eq(zt_1|yl:T) [Drr(q(z | ze-1,y1.7) || p(2¢ | 26-1))]
t=2
= Er,s + EKL7
3)

where the conditioning on w.7 has been omitted for brevity.

The first summation is the smoothed reconstruction loss
L, s, while the summed KL divergence terms are denoted
L. These models can be trained by maximizing the lower
bound using stochastic backpropagation [9].

III. EKF TRAINING WITH REPLAY OVERSHOOTING

In this section, we present the replay overshooting method.
RO works in two passes: a smoothing pass that trains the
model’s posterior inference by computing q(z; | u1:t—1, Y1:¢)
(Sec. II-A) and a prediction pass that computes an alternate
factorization of ¢, denoted ¢'(z; | w1.4—1,¥1.¢) (Sec. III-B),
which provides an exclusive gradient path for the dynamics
model. In the following sections, we provide details and
compare to other methods.

A. Posterior Inference with the Neural EKF

The neural EKF is jointly composed of the dynamics and
observation models fp and g4. As stated in Sec. I-A, since the
nature of Bayesian filtering allows us to perform inference
without a third network, we can use the neural EKF to reduce
the number of learnable parameters, eliminate the need to
design and tune a new network, and replace the gradient
paths for training the inference network with new paths for
the dynamics and observation models.

Empirically, we have found that the EKF is an effective
learner even when fy and g, are parameterized by shal-
low multi-layer perceptrons (MLPs) without any additional
features like normalization, dropout, etc. Additionally, using
a skip connection between the first and last layers of the
dynamics such that we model z;11 = z; + fo(t, 21, ut) helps
improve learning as in ResNet [20]. Though the EKF requires
the Jacobians of fy and gy, since the EKF is differentiable,
these are easily computed using autodifferentiation libraries
in deep learning frameworks like PyTorch [21], [22].

Further, the architecture does not change even when fy
instead represents a continuous-time dynamical model. In-
stead, the Kalman update equations are simply replaced by
the Kalman-Bucy equations [23] and dynamical rollouts are
conducted using differentiable ordinary differential equation
(ODE) solver operations rather than looped discrete updates.
This allows us to exploit the benefits of neural ODEs [24],
including constant-time memory complexity, customizable
ODE solvers that balance solution quality vs. computational
complexity, and infinite-resolution data imputation. To our
knowledge, this is the first framework to unify discrete and

continuous-time dynamics learning, unlike other architec-
tures that only operate in continuous-time [24], [25], [26].

One caveat for the EKF is that the distributions over
states and observations must be multivariate Gaussians. For
data with restricted domains like images, we borrow the
KVAE architecture [12], which learns an additional VAE to
encode the original observations o into latent observations
y. We can then freely choose the distribution over the latent
observations y and latent states z to be Gaussian and jointly
train the VAE with the dynamics and observation models.

Finally, some related methods propose the use of stan-
dard rather than extended Kalman updates [4], [12]. These
methods learn an ensemble of linear models and use a
neural network to compute the weights between them at
every time step, yielding an approximate linear dynamical
model that enjoys the benefits of the standard Kalman filter’s
exact posterior inference. Conversely, the EKF instead learns
an exact nonlinear dynamical model but can only perform
approximate posterior inference using the extended Kalman
updates. We show experimentally that the latter approach is
superior on the tasks examined in Sec. IV.

B. Replay Overshooting

The objective in eqn. (8) provides a strong training signal
for posterior inference through the reconstruction loss term
L, s. However, the dynamics distribution only appears in the
KL divergence terms. For methods that do not utilize the
dynamics model during posterior inference (e.g. [3], [4], [5]),
this severely weakens the training signal for prediction. We
observe that this often overtrains the observation model to
compensate for dynamic model inaccuracy, which precludes
learning an effective standalone predictor fy.

In contrast, many methods propose the idea of overshoot-
ing, or rolling out their dynamics model over several steps
to provide a training signal that backpropagates exclusively
through fy. Observation overshooting [15], [5] consists of
rolling out “branched” predictions at every state in a length-
n latent trajectory for an additional & < n steps, then
computing the losses on the corresponding predicted future
observations. While this method enriches the training signal,
it is inefficient for large k or high-dimensional observations
like images [5]. Alternative methods first filter on n steps
then compute a reconstruction prediction loss over an addi-
tional & steps from only the last state of the filtered sequence,
which is generally less computationally intensive [13], [14].
We refer to these two classes of overshooting as branched
and sequential overshooting.

In replay overshooting, we perform sequential overshoot-
ing from the smoothed initial condition instead of the end of
the filtered sequence, which “replays” the distributions we
have already computed in the smoothing pass but without
intermittent measurement updates. This allows us to op-
timize our models using (8), wherein the KL loss terms
regularize the smoothed posterior with the transition model
p(2t | zt—1,us—1). These terms also encourage the transition
distributions to resemble the smoothed posteriors, which
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Fig. 2: Overshooting methods. Circles indicate filtering or smoothing and squares prediction. Superscripts indicate time step. Predicted
samples are indicated by (-). (A) Branched overshoot [15], [5]. k predicted states are rolled out from each of n filtered latent distributions.
(B) Sequential overshoot [13], [14]. n states are filtered and then k more states are predicted afterwards. (C) Replay overshoot (ours). n
smoothing steps are executed (top). The smoothed prior is used to sequentially roll out n prediction distributions (bottom).

enjoy the information from the full observation sequence.
Fig. 2 summarizes the various overshooting methods.

If n is large, then replay overshooting alone can lead
to unstable learning, since before the dynamics model is
near convergence, a long sequence of inaccurate predictions
can easily lead to exploding gradients, which also occurs
when rolling out time-series predictions with RNNs [27].
We have also observed that this effect practically constrains
the value of k chosen in standard overshooting. To remedy
this, we institute a ramped learning curriculum, where the
observation trajectories are lengthened during training from
length 2 to n. Learning is easier on short sequences, so by
truncating the data early on, the training remains stable and
learning on increasingly longer sequences becomes easier.
This ultimately allows stable learning on the full trajectories.

C. Mixed Learning Objectives

Since the Kalman update equations allow direct propaga-
tion of the prediction distributions, we can directly recover
an alternate joint distribution over the latent states:

T
¢ (zir |y, wr) = pl2 | yir) Hp(Zt | zt—1,ut-1),

t=2
€))

where p(z1 | y1.7) is computed from the smoothing pass and
the distributions in the product are computed from Kalman
prediction updates. Like in observation overshooting, this
yields a prediction reconstruction objective:

ﬁép = Eq’(zlzT\ylzTﬁulzT) [1ng(y1:T | 21:T, ul:T)] . (10)

We can now augment the lower bound in (8) and consider a
new training objective derived from RO:

(1)

where 0 < a < 1. We refer to this as observation replay
overshooting (ORO).

Alternatively, consider the scenario where an oracle pro-
vides true latent states Zj.p corresponding to observations
y1.7. In this scenario, we could train the dynamics directly by
maximizing the likelihood of the true states. One approach is
to use the means of the smoothed latent distributions z;.;7 =

‘C:nired = a‘cr,s + (]- - a)ﬁi”p + ﬁKL,

13.p as latent targets when rolling out the dynamics. Practi-
cally, this works well since the smoother often converges
much earlier than the dynamics alone. This perspective
is simply the replayed version of the latent overshooting
method presented in [5], so we refer to it as latent replay
overshooting (LRO).

Formally, we can maximize the latent prediction recon-
struction objective L7 :

T
L7, =p | yr) HIng(Zt | Zt—1, ug—1)- (12)
t=2
This yields a second modified learning objective:
Lriwea =Lrs+ (1 —a)Lf, + Lxr. (13)

Finally, we found that annealing both the KL terms and
the prediction loss terms often helped, since first learning a
good smoother helps stabilize the learning for the dynamics
model by recovering more accurate distributions over the
initial condition p(z; | y1.7), leading to prediction rollouts
with less cascading error. As in [28], we found that adding a
coefficient S > 1 to L, sometimes improved performance.

IV. EXPERIMENTS
A. Setup

Our model is evaluated on two different datasets. The
first is the pendulum example from [4], which consists
of sequences of synthetic noisy video frames showing the
motion of a swinging motorized pendulum. The second
is a subset of the MIT Push Dataset, which consists of
planar position trajectories of objects of varying geometry
being pushed on surfaces of varying material by a real
ABB IRB 120 robot arm. The data were collected by Vicon
motion capture cameras [29], [30]. The quality of predictions
was evaluated with two metrics: the negative log-likelihood
(NLL) as well as the average L2 loss over 100 samples.

We compare our models to the branched latent overshoot,
branched observation overshoot, and no overshoot recurrent
state space models (L-RSSM, O-RSSM, and N-RSSM) from
[5]. We also compare to the linear ensemble EKF dynamics
model from [12] trained with ORO (O-LE).
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Fig. 3: Curated predictions for pendulum experiments. The top row is the ground truth data. Our methods are denoted with an asterisk. The
red line (¢ = 25) denotes the end of filtering and start of prediction. The two best models quantitatively (O-DT-EKF and O-RSSM) yield
accurate sampled predictions over the whole sequence. The overconfidence of the RSSM model can be observed in frames 35-40, where the
predictions are slightly offset from the data. Additionally, the continuous-time model (O-CT-EKF) also generates high-quality predictions
despite early stopping. Finally, the linear ensemble model (O-LE) suffers from degrading reconstructions over time. The distribution over
pixels appears wide, which prevents the NLL loss from becoming too large, but causes the L2 loss to increase substantially.

We test four versions of our model: the discrete-time
model with LRO, ORO, and no overshooting (L-DT-EKF,
O-DT-EKF, N-DT-EKF) as well as a continuous-time model
trained with ORO (O-CT-EKF). All EKF models directly
learn a diagonal-covariance Gaussian prior p(z;) and diago-
nal time-invariant noise covariances () and R. To make com-
parisons across models fair, we parameterized the dynamics
and observation networks as MLPs with three hidden layers
for all models. We also used the ramped curriculum for all
models to stabilize training.

The continuous-time models trained more slowly by 1 to 2
orders than the discrete-time models and were early-stopped
after about one day of training instead of to convergence to
roughly normalize model performance with wall clock time.
Still, the continuous-time models remain competitive. In the
future, recent speedups for neural ODEs may be applied to
improve the runtime and performance [31], [32].

B. Pendulum Experiments
The pendulum data were generated from the model
g . b o 1

—psnl0) = TRl

where m, b, [, u are mass, damping, length, and input torque.

6 = (14)

Latent Manifold: O-DT-EKF

Latent Manifold: N-DT-EKF

Fig. 4: Predicted latent manifolds (gray) for the pendulum ex-
periment generated from using observation replay overshooting
(left) and no overshooting (right). A sample was chosen and its
embedding in both spaces highlighted in red. The figure suggests
replay overshooting learns interpretable manifolds that correlate
well to sinusoidal motion, resembling the manifolds from [4].
Without overshooting, the manifold does not form a meaningful
geometry (all states go from one corner to the other regardless of
initial condition). This poor qualitative result accompanies equally
poor performance on quantitative metrics in Sec. IV.

We constructed a training dataset of 10000 trajectories
injected with Gaussian noise along with corresponding ran-
dom sequences of input torques. The control signals were
subjected to a zero-order hold discretization at the sampling
frequency of the data and the trajectories were converted into
16 x 16 grayscale video frames. Like in [33], we represented
the distribution over pixels as a discrete softmax distribution
instead of a density over continuous pixel values.

The RO models all used @ = 0.5 for the joint recon-
struction weight, the RSSM models used overshooting length
k = 2, and the O-LE model used an ensemble of size
10. All models used the same image VAE to recover latent
embeddings.

Fig. 4 illustrates the learned latent embedding of the O-
DT-EKF versus the N-DT-EKF. We found that the resulting
latent manifold was well-correlated with the pendulum’s
angle and angular velocity, consistent with findings from
[4]. We suspect the improved training signal from RO helps
shape the manifold, whereas when training for posterior
inference alone, the latent space remains less structured as
the measurement update strongly corrects dynamics errors.

Quantitatively, the three ORO-trained models significantly
outperformed all others in the NLL criterion. ORO mod-
els tended to develop more conservative predictions over
the image reconstructions while the RSSM models and
no-overshoot EKF developed overconfident estimates with
very peaked histogram distributions over pixels values. This
peakedness produced poor NLL performance, but since the
peaks were often close enough to the true values, models
like O-RSSM or L-RSSM performed well according to the
L2 criterion, with O-RSSM outperforming O-DT-EKF.

In other words, ORO helps learn more realistic measures
of uncertainty while the other methods prioritize computing
accurate mean predictions. In a reinforcement learning envi-
ronment with deterministic physics, this may be sufficient to
achieve good performance with the RSSM models [5], [16].
We also found the L-DT-EKF performed as poorly as the
N-DT-EKF. We hypothesize that since the latent space itself
evolves during training, the targets used in LRO are not stable
for dynamics learning. In contrast, the space of observations
and the data remain static, which naturally encourages stable
manifold learning with ORO. The EKF models achieved at
least as good performance as the baselines with about 4.5
times fewer parameters. For a summary, see Table 1.



PEND (NLL) PEND (L2 x le-2) PEND PUSH (NLL) PUSH (L2 x le-2) PUSH
F5/P50 | F25/P50 [ F5/P50 [ F25/P50 | Model Size || F5/P25 | F25/P25 | F5/P25 [ F25/P25 | Model Size

O-LE 788.6 762.0 5.303 4.663 2.400 4.017 23.55 27.05 39,342
N-RSSM 1158 1055 3.194 2.806 91,392 3.662 1.891 14.46 13.26 147,412
L-RSSM 1197 853.1 3.325 2.14 91,392 1.636 1.289 16.94 15.74 147,412
O-RSSM 1034 758.2 2.981 1.997 91,392 4.023 2.199 26.68 21.97 147,412
O-CT-EKF 8329 769.2 3.362 2272 21,726 -0.565 -0.832 18.49 17.25 23,126
N-DT-EKF 1180 1202 4.087 4.157 21,726 -2.261 -2.482 14.40 13.26 23,126
L-DT-EKF 1108 1102 4.592 4.553 21,726 -1.632 -2.226 12.28 10.70 23,126
O-DT-EKF 781.7 744.6 3.102 2.605 21,726 -3.360 -2.389 8.810 10.172 23,126

TABLE I: The full quantitative results for all models using NLL and L2 loss normalized by batch size and trajectory length (lower is
better). F#/P# indicates the number of provided points to filter on and the number of subsequent points to predict. Model size refers to the
number of parameters of the base dynamics and observation model. The size of the image VAE (5,252,065 parameters) was subtracted
from the reported PEND models since all PEND models used the exact same image autoencoder architecture for equal comparison. We
observe that our EKF model trained with ORO performs the best overall, especially when the number of filter points is low.

As in [5], we found that using standard overshooting did
not guarantee good performance, and oftentimes seemed to
yield worse models. Additionally, models trained with an
overshoot of k > 2 generally experienced instability during
training and did not satisfactorily converge, and if they did,
significant amounts of hyperparameter tuning were required.
We suspect that the exploding gradient problem motivating
our ramped curriculum strongly influences this instability.

C. MIT Push Experiments

We use a whitened curated subset of the MIT Push Dataset
from [30] consisting of around 1600 trajectories. In each
trajectory, the object geometry varied as well as the material
of the surface. We did not train any models to condition on
shape or material type. We constructed custom control inputs
consisting of the commanded xy position and velocity of
the robot end-effector and a contact boolean value indicating
whether the end-effector should touch the object. Again, we
used a = 0.5 for RO weighting and k = 2 for the standard
overshoot horizon. The O-LE model used 100 linear models.

The extreme nonlinearity of the friction and contact dy-
namics is apparent upon analyzing the poor O-LE predic-

Evaluation Metrics vs Prediction Horizon for MIT Push

Negative Log-Likelihood L2
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Fig. 5: The evaluated metrics plotted over the prediction horizon
given 5 filter points (lower is better). The RO models (solid) are
compared to the baselines (dashed). EKF and RSSM methods with
the same type of overshooting (none, observation, or latent) are
plotted in the same color. The EKF models scale better as the pre-
diction horizon increases except for the O-LE model, which poorly
approximates the nonlinear contact dynamics. The RSSM models
tend to learn overconfident predictions, often scaling competitively
with respect to L2 but performing relatively worse on NLL. This is
usually a result of very peaked prediction distributions near the true
value but with low variance, causing large decreases in likelihood.

tions, which supports our method of learning exact nonlinear
models over approximate linear ones. Table I indicates that
all EKF models trained using RO are more accurate by
almost all measures and over 6 times more parameter-
efficient than the baseline models. LRO also achieved worse
NLL results than no overshooting, but better L2 results. This
suggests that the LRO model also suffers from overconfident
predictions. We note that the O-DT-EKF has decreasing
performance with more filter points, which we suspect is also
due to the aforementioned overconfidence effect induced by
an abundance of observations.

Fig. 5 shows that as the prediction horizon increases, our
EKF-based models retain much more accurate probability
distributions than their RSSM counterparts. The excellent
performance of O-DT-EKF across all prediction horizons
suggests that our hypothesis that the EKF structure provides
a strong training signal for learning a robust stochastic
dynamics is correct. Meanwhile, once the RSSM models are
applied to the real-world push data rather than synthetic data
generated from simulation environments, the performance
decreases substantially. Again, ORO produced significantly
better performance than LRO, matching the pendulum re-
sults, suggesting that independent of the data, using the
observations as targets for training is more effective than
using the smoothed latent states.

V. CONCLUSION

This paper introduced replay overshooting, a method that
capitalizes on the structure of the EKF to learn stochastic
nonlinear latent dynamics models from any type of time-
series data. The EKF enjoys a much simpler architecture
than competing methods with improved gradient paths that
strongly encourage learning good latent dynamics models
and meaningful latent manifolds. We demonstrated that mod-
els trained using RO can accurately generate predictions
over long horizons and outperform many other overshooting-
based models both quantitatively and qualitatively. We also
demonstrate that RO can learn competitive continuous-time
dynamics models without modifying the architecture.
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