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Abstract— In order to achieve effective coordination between
heterogeneous robot teams and humans, strategies for predic-
tion, decentralized control, and safety must be studied together.
This paper analyzes the multi-agent collaborative transport
problem, wherein a team of agents must work together to
safely move a load from one location to another without
communication. In particular, this setup assumes the leader
blindly tracks some desired trajectory without regard for
safety and the followers must protect the load. The paper’s
contributions include a general mathematical framework for
analyzing safety given decentralized dynamical predictions, a
heuristically-motivated method for quantifying trust in a team,
a robustness analysis of the resulting strategies with quanti-
tative criteria for design parameter selection, and simulations
validating the performance of the proposed method.

I. INTRODUCTION

A. Motivation

In recent years, significant advances have allowed multi-
robot systems to effectively automate tasks that are diffi-
cult, expensive, or time-consuming for human or single-
robot agents. Among these tasks are area coverage for
surveillance and emergency monitoring, mapping, and load
transport. Novel mathematical tools have been developed to
ensure the stability of these objectives, including the linear
consensus protocol (LCP) for rendezvouz, LCP derivatives
for formation control, weighted protocols for connectivity
maintenance, and Voronoi partitioning methods [1], [2].

In parallel, the field of safe control has blossomed with
new developments in control barrier functions (CBFs),
which can formally guarantee safety in dynamical control
systems [3]. However, while CBFs are effective when a
system’s dynamics are well-characterized, these guarantees
erode as model quality and accuracy decreases. Additionally,
many multi-agent control strategies assume the existence of a
communication network which may not be present in teams
with heterogeneous composition or with humans.

To that end, this paper studies the multi-agent collabo-
rative transport task, wherein a team of agents composed
of humans and robots work together to transport a load
that may be cumbersome or impossible for a single agent
to move alone. In particular, the analysis presumes that
there is an explicitly designated leader who may guide the
load freely and be assisted and/or protected by a group of
followers. This setup is common in tasks where a human
leader may have an intended objective that is difficult to
explicitly communicate to robotic assistants in unstructured
environments with obstacles or hazards.
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Fig. 1: A typical collaborative transport task. Two agents (red)
must work together to transport a load (blue) in an environment
with obstacles or hazards (shaded). Typically, the agents will also
have asymmetric access to information due to factors like visual
occlusions or sensor availability, so accurate predictions of the team
behavior are necessary for success.

B. Related Work

CBFs have been used to control multi-robot systems
featuring communication networks with great success. A
collision avoidance algorithm that was minimally invasive
with respect to a nominal control action was implemented in
[4]. A minimally-invasive formation control algorithm with
communication delays was implemented in [5]. An approach
to encoding many objectives like collision avoidance and
proximity maintenance in one function was presented in [6].

Multi-agent collaborative transport has also been previ-
ously studied, such as for the furniture-moving problem [7]
or with the inclusion of human teammates using methods
like programming by demonstration [8] and human intent
modeling via neural networks [9]. On the other hand, many
methods use no prediction model, instead assuming a desig-
nated leader always executes safe actions. For example, in
[10], the followers apply a simple consensus-like control law
that guarantees convergence to the leader’s desired trajectory.
Similarly, [11] implements an decentralized adaptive method
that allows agents to learn the load properties and achieve
trajectory tracking.

Despite these successes, ensuring formal safety guarantees
given decentralized predictions remains an unsolved prob-
lem. This work therefore seeks to unify safe multi-robot
approaches with predictive methods suitable for human-robot
collaboration.



C. Contributions

The contributions of this paper with respect to the afore-
mentioned prior work are
• a generalizable prediction-based framework for safe

decentralized collaborative control,
• a heuristically-motivated method to dynamically update

each agent’s trust in the team,
• a robustness analysis of the proposed method including

controller design heuristics, and
• simulations characterizing the strategy’s effectiveness.

II. PROBLEM SETUP

A. Notation

The notation in the remainder of this paper abides by
the conventions described here. The analysis is conducted
in SE(2), where (x, y) denote position and θ orientation. If
not otherwise specified, these variables refer to the carried
load’s center of mass (COM) states. The load mass and
moment of inertia about its COM are denoted m and I
respectively. The total number of agents is denoted n. For
continuous-time representations, the explicit dependence on
time t is omitted. For clarity, discrete-time variables will
show the dependence on time step k using brackets, e.g.
x[k]. Components of vectors are written as superscripts while
subscripts are reserved for designating the agent of interest.
For example, F x corresponds to the x component of force
while Fi corresponds to the force exerted by agent i.

B. Joint Dynamical Model

The joint system consists of the load, which follows rigid
body dynamics in the plane, and the leader and follower
agents, which are infinitesimally small, massless, and rigidly
attached to the load. Friction is ignored, as it does not
significantly affect the analysis. External disturbances are
also not modeled. Thus, the joint dynamics can be expressed:

mẍ =

n∑
i=1

F xi , (1)

mÿ =

n∑
i=1

F yi , (2)

Iθ̈ =

n∑
i=1

ri × Fi. (3)

The joint state refers to the following values with respect
to the load COM:

z =


z1
z2
z3
z4
z5
z6

 =


x
ẋ
y
ẏ
θ

θ̇

 , (4)

which allows the following state-space representation of the
joint dynamics:

ż =



ẋ
ẍ
ẏ
ÿ

θ̇

θ̈

 =


z2

1
m

∑n
i=1 F

x
i

z4
1
m

∑n
i=1 F

y
i

z6
1
I

∑n
i=1 ri × Fi

 . (5)

C. Assumptions

Necessary assumptions are detailed in this section. First,
each robot is equipped with the following sensors:
• inertial measurement units (IMUs),
• cameras, and
• laser rangefinders.
Each robot is assumed to possess the following capabilities

and information:
• the ability to perform simultaneous localization and

mapping for accurate position estimates,
• accurate estimates of the load’s physical properties and

COM position,
• accurate load velocity estimation techniques given local

velocity measurements,
• the ability to independently apply a net torque by

applying forces at two distinct locations, and
• knowledge of the number of total agents.
With the above sensors and capabilities, the robot can

measure the joint state z. Though some of these assumptions
are generous, recent results using methods like adaptive
control detail procedures for decentralized estimation of
some of the required information [11].

The assumption that each robot can apply two forces is
summarized by the following equations:

F xi = F xi,1 + F xi,2, (6)

F yi = F yi,1 + F yi,2, (7)

Mi = ri,1 × Fi,1 + ri,2 × Fi,2, (8)

where Fi,1 and Fi,2 correspond to the forces applied by
robot i at its first and second attachment points respectively
and ri,1, ri,2 denote the locations of those attachment points
relative to the load COM.

III. MATHEMATICAL PRELIMINARIES

A. Definitions

This section will summarize the theory of control barrier
functions. First, the following definitions will prove useful:

Definition 1 (Class-K Function). α : [0, a) → [0,∞] is
a class-K function if α(0) = 0 and α is monotonically
increasing. Further, α : (−c, d)→ (−∞,∞), c, d > 0 is an
extended class-K∞ function if it satisfies the same properties
as a class-K function over its extended domain.

Definition 2 (Lie Derivative). The Lie Derivative evaluates
the change of a tensor field along the flow of another
vector field. For the purposes of this paper, it serves as



a convenient notational shorthand relating two sufficiently
smooth functions h(z), f(z):

Lfh =
∂h

∂z
· f(z). (9)

This can be equivalently interpreted as a directional deriva-
tive, though the Lie derivative is more general.

Definition 3 (Forward Invariance). A set C is forward
invariant if for every z0 ∈ C, z(t) ∈ C for z(0) = z0,∀t ≥ 0.

B. Control Barrier Functions

The summary of control barrier functions in this section
follows from [3]. Safety can be interpreted as the enforce-
ment of the invariance of a safe set

C = {z ∈ D | h(z) ≥ 0}. (10)

By convention, the safe set is the 0-superlevel set of a
continuously differentiable function h : D → R which maps
states in the domain D to a scalar. The dynamical control
system ż = f(z, u) is safe if C is forward invariant. This
allows the definition:

Definition 4 (Control Barrier Function). Let C ⊂ D ⊆ Rn be
the 0-superlevel set of a continuously differentiable function
h : D → R. Then, h is a control barrier function if there
exists an extended class-K∞ function α such that for the
control-affine dynamics ż = f(z) + g(z)u,

sup
u
{Lfh(z) + Lgh(z)u ≥ −α(h(z))} (11)

for all z ∈ D.

The intuition for this definition is as follows: if the
system is unsafe (h(z) < 0), then the safety dynamics are
constrained to be evolving towards the safe set (ḣ(z) > 0).
Further, the rate at which the value of h approaches the safe
set increases with a decrease in h due to the monotonicity of
α. If the system is safe (h(z) ≥ 0), then the safety dynamics
are free to evolve to become more or less safe, which allows
the system to approach the boundary of the safe set if needed.

For continuous-time systems and control-affine dynam-
ics, the following optimization problem will always be a
quadratic program in u:

minimize
u

u>u

subject to Lfh+ Lghu ≥ −α(h(z)).
(12)

If there are no constraints on the magnitude of u, then the
above problem is always feasible and formally guarantees
the safe evolution of the system.

C. Exponential Control Barrier Functions

The theory presented in the prior section relies on the
ability of the control input to directly affect ḣ(z). However,
in the case when the relative degree of the CBF (with respect
to the input u) is greater than two, i.e. only higher-order time
derivatives of h depend on the input, (12) does not provide
a sufficient framework for ensuring safety.

The exponential control barrier function (EBCF) was
established in [12] as a method for enforcing safety even for
systems with arbitrarily high relative degree. The findings
are summarized here. First, for a system with relative degree
r, define the following:

ηb(z) =


h(z)

ḣ(z)
...

h(r−1)(z)

 =


h(z)
Lfh(z)

...
Lr−1f h(z)

 . (13)

Then, the following linear system can be constructed:

η̇b(z) = Fηb(z) +Gµ,

h(z) = Cηb(z),
(14)

where

F =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 , G =

0
...
1

 ,
C =

[
1 0 . . . 0

]
.

(15)

For the selection µ ≥ −Kαηb(z), it is guaranteed that
h(z(t)) ≥ Ce(F−GKα)tηb(z0). Formally:

Definition 5 (Exponential Control Barrier Function). For
C ⊂ D ⊆ Rn defined as the 0-superlevel set of an r-
times continuously differentiable function h : D → R, h
is an exponential control barrier function if there exists a
row vector Kα ∈ Rr such that for control-affine dynamics
ż = f(z) + g(z)u,

sup
u

{
Lrfh(z) + LgL

r−1
f h(z)u ≥ −Kαηb(z)

}
(16)

∀x ∈ Int(C) ensures that h(z(t)) ≥ Ce(F−GKα)tηb(z0) if
h(z0) ≥ 0.

The main result requires some additional restrictions on
the closed-loop poles of F −GKα. First, the poles must be
real and strictly negative. Second, define the recursive family
of functions

y0 = h(z)

y1 = ẏ0 + λ1y0
...

yi = ẏi−1 + λiyi−1.

(17)

Then, the following must be satisfied:

−λi(F −GKα) ≥ − ẏi−1(z0)

yi−1(z0)
. (18)

In practice, the following selection rule works well and
allows tuning of the strictness of the ECBF:

λi = min

(
ẏi−1(z0)

yi−1(z0)
,−ci

)
, (19)

where ci > 0 is an “alternate” gain for the ith pole of F −
GKα and greater values yield greater responsiveness to CBF



violations. However, choosing over-aggressive values for ci
may produce instability.

IV. CONTROL FOR COLLABORATIVE TRANSPORT

Having laid the mathematical groundwork for general
safety theory, the following section presents the control
strategy for safe decentralized collaborative transport.

A. Nominal Control Strategy

In explicit-leader schemes, it is reasonable to assume that
the leader directs the load according to some higher-level
planning algorithm and the followers assist the leader by
applying an assistive force. In this paper, the leader blindly
uses proportional-derivative control laws to track some pre-
computed desired trajectory without regard for safety. The
desired net applied force is therefore computed as

Fd = −kp(p− pd)− kd(ṗ− ṗd), (20)

where p is the vector of the load’s position states[
x y θ

]>
; ṗ is the vector of the load’s velocity states[

ẋ ẏ θ̇
]>

; and pd, ṗd are the desired position and velocity
states respectively.

The leader also tracks a desired orientation at which the
vector from the load COM to the leader rl is tangent to
the trajectory. This yields the following expression for the
desired moment:

Md = −kθsign(γ) |β| − kωω, (21)

where

γ = det
([

ṗd
‖ṗd‖

ṙl
‖ṙl‖

])
, (22)

|β| = cos−1
(

ṗd
‖ṗd‖

· rl
‖rl‖

)
. (23)

Here, the value |β| is the magnitude of the heading error of
the load, while γ indicates the sign of β.

The following optimization problem computes a feasible
control input for the leader ul =

[
F xl,1 F xl,2 F yl,1 F yl,2

]>
that satisfies Fd and Md so long as the two points of force
application are not located identically in the plane:

minimize
u

‖u‖22

s.t.

F xdF yd
Md

 =

 1 1 0 0
0 0 1 1
−ryl,1 −ryl,2 rxl,1 rxl,2

u (24)

The followers nominally apply the control law from [10]
to assist the leader by pushing the load in the direction it is
already traveling:

Fd = ka
v

‖v‖
, (25)

Md = 0, (26)

where v is the current load positional velocity
[
ṗx ṗy

]>
.

Note that the desired net moment is zero, since the goal is
for the leader to direct the load’s travel. The corresponding
nominal follower inputs are similarly computed using (24).

B. Safety Constraints

The safety concerns studied in this paper are collision
avoidance and limits on the load’s linear and angular veloci-
ties. For a desired lower bound on the distance to obstacles δp
and desired upper bounds on the linear and angular velocity
δv, δω , the following barrier functions can be defined:

hd = ‖d‖2 − δ2p, (27)

hv = δ2v − ‖v‖
2
, (28)

hω = δ2ω − ‖ω‖
2
. (29)

Geometrically, {z | hd(z) < 0} can be interpreted as the
set of states occupying a ball of radius δp about the obstacle,
which forms the complement of the safe set for collisions. In
contrast, the balls with radii δv, δω are the safe sets for linear
and angular velocities and their complements are dangerous.

C. Decentralized Dynamical Prediction

Having established a viable nominal strategy and associ-
ated safety constraints for the task at hand, a particular robot
i in the team must predict the actions of the other team
members in order to compute an appropriate control action.
The joint dynamics from Section II-B can be expressed in
the following control-affine form:

ż = f(z) + g1(z)u1 + · · ·+ gi(z)ui + . . . gn(z)un

= f(z) +
∑
j 6=i

gj(z)uj + gi(z)ui. (30)

Using this decomposition, the predictive dynamics for
robot i can be written

ˆ̇zi = f̂i(z, ûj 6=i) + ĝi(z)ui, (31)

where

f̂i(z, ûj 6=i) = f(z) +
∑
j 6=i

gj(z)ûj , (32)

ĝi(z) = gi(z), (33)

and predicted values are designated with a hat. If the predic-
tive load dynamics are accurate, then a safe control action
from the perspective of robot i can be derived using the
methods presented in Sections III-B and III-C.

This paper considers the following crude zeroth-order
prediction model, which assumes that each agent will apply
the same forces and moments as in the previous time step:

F̂j [k] = Fj [k − 1], M̂j [k] = Mj [k − 1], ∀j 6= i. (34)

Remark 1. Though the dynamics and barrier function theory
are derived in continuous time, the prediction model in (34) is
naturally conceived of in discrete time, since in continuous
time, there is not a well-defined notion of the “previous”
inputs. In practice, with a sufficiently fine control frequency,
this pseudo-continuous strategy performs adequately and is
easily implemented on digital systems. Additionally, the
designer is free to choose a continuous-time prediction law,
as long as it is expressible in closed form. The remainder of
this section uses discrete-time notation, but one can readily



convert between discrete and continuous time using the
relation t = k∆t, where 1/∆t is the control frequency.

By manipulating the dynamical model presented in Section
II-B using a similar decomposition as in (30), one obtains
the following expressions at any given time step k:∑

j 6=i

F xj = mẍ− (F xi,1 + F xi,2), (35)∑
j 6=i

F yj = mÿ − (F yi,1 + F yi,2), (36)∑
j 6=i

Mj = Iθ̈ − (−ryi,1F
x
i,1 − r

y
i,2F

x
i,2 (37)

+ rxi,1F
y
i,1 + rxi,2F

y
i,2).

The prediction model then gives∑
j 6=i

F̂ xj [k] = mẍ[k − 1]− (F xi,1[k − 1] + F xi,2[k − 1]),∑
j 6=i

F̂ yj [k] = mÿ[k − 1]− (F yi,1[k − 1] + F yi,2[k − 1]),∑
j 6=i

M̂j [k] = Iθ̈[k − 1]− (ri,1[k − 1]× Fi,1[k − 1]

+ ri,2[k − 1]× Fi,2[k − 1]).
(38)

Therefore, if the input of robot i is written

ui =
[
F xi,1 F xi,2 F yi,1 F yi,2

]>
, (39)

the predictive dynamics at step k can be expressed as

f̂i =



z2[k]
1
m

∑
j 6=i F̂

x
j [k]

z4[k]
1
m

∑
j 6=i F̂

y
j [k]

z6[k]
1
I

∑
j 6=i M̂j [k]


, (40)

ĝi =


0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

−ryi,1[k] −ryi,2[k] rxi,1[k] rxi,2[k]

 . (41)

To compute the aggregate force and moment predictions,
robot i requires knowledge of the linear and angular accel-
erations of the load’s center of mass. When these values
cannot be directly measured, they can be estimated using, for
example, first-order Euler estimates and velocity data (which
may in turn be estimated from position data).

D. Optimal Evasive Maneuvers

With the nominal controller and predictive dynamics es-
tablished, a decentralized and minimally-invasive control
input can be computed for robot i. Let Li be the set of
indices corresponding to detected obstacles in the environ-
ment. Further, let Vi be the set of indices corresponding to
the points on the load which robot i tries to protect from

collision. In other words, if j ∈ Li and k ∈ Vi, then hijk is
the CBF relating the distance between the jth obstacle that
robot i observes and the kth protected point on the load.
Borrowing the notation from [12], let

ηijk =

[
hijk
ḣijk

]
. (42)

With this notation, the solution to the following quadratic
program yields a minimally-invasive safe control input for
robot i with respect to the predictive dynamics:

minimize
u

‖u− ui,nom‖2 (43)

subject to Lf̂ihv + Lĝihvu ≥ −αv(hv)
Lf̂ihω + Lĝihωu ≥ −αω(hω)

L2
f̂i
hijk + LĝiLf̂ihijku ≥

−Kijkηijk, ∀j ∈ Li, ∀k ∈ Vi.

Using the design protocol presented in Section III-C for
designing ECBFs, one can first select the desired eigenvalues
of the closed-loop linear system (14) and then use standard
pole placement techniques to select the feedback gains Kijk

corresponding to barrier function hijk. Let λ1, λ2 be the two
closed-loop poles. Then, applying (19) gives

λ1 = min

(
ḣijk(z0)

hijk(z0)
,−c1

)
,

λ2 = min

(
ḧijk(z0, ui,nom)

ḣijk(z0)
,−c2

)
,

(44)

where c1, c2 > 0 are tunable constants and z0 is the value of
the load state when CBF hijk is instantiated. For example, if
any obstacle leaves the view of robot i and is detected again
at a later time, then the pole placement procedure must be
repeated since the barrier function will have been inactive
for some period of time and must be re-instantiated.

Remark 2. Recall that because hijk will have relative
degree 2, hijk and ḣijk do not depend on the input ui.
However, since the selection criteria for λ2 will in general
depend on the highest-order time derivative of hijk—which
in turn depends on the input—a sound choice is to compute
the second derivative as a function of the nominal input,
since one would hope for the nominal input to be close in
magnitude to any input resulting in evasive maneuvers.

Remark 3. The exact class-K∞ functions αv and αω as well
as the values of feedback gain matrix Kijk can be selected
through empirical testing or simulation. Depending on the
magnitude of prediction, discretization, or other modeling
error, parameter values which may be appropriate for some
scenarios may be unsafe or destabilizing in others. Some
intuition can be borrowed from classical gain tuning in this
regard. For example, if αv or αω are chosen with large
growth rates, then the convergence back to safe linear and
angular velocities will be rapid, but if modeling errors result
in a large violation of either constraint, then the resulting
input may induce oscillations and become unbounded, as in



the use of overly-aggressive proportional gains. In practice,
selecting linear functions for α(·) seems to work well.

E. Dynamic Trust

The simplicity of the prediction model may yield poor per-
formance when many robots simultaneously make inaccurate
predictions. Consider a scenario where the load approaches
an obstacle and all followers observe the obstacle at the same
instant. Based on the zeroth-order prediction dynamics, no
robot will expect any other to react to the obstacle, and it is
likely that the aggregate action will result in an overreaction
that can destabilize the system.

Define ψi(h) as the trust factor that robot i has in the team
to enforce barrier function h. Further, if robot i is actively
enforcing mi different barrier functions, define the aggregate
trust factor of robot i as

ψi =
1

mi

mi∑
j=1

ψi(hj). (45)

A heuristically-motivated strategy for acting appropriately
is dividing the safe input from the optimization problem in
(43) by the aggregate trust factor. Consider some value of a
particular trust factor at step k, ψi(h)[k]. Let the predictive
barrier value for the CBF value at step k be one of

ĥ[k] = h[k − 1] + (∆t)ḣ[k − 1], (46)

ĥ[k] = h[k − 1] + (∆t)ḣ[k − 1] +
1

2
(∆t)2ḧ[k − 1], (47)

depending on whether h has relative degree one or two,
where the highest-order time derivative of h should depend
on the input ui[k − 1].

Then, an update rule for the trust factor can be written:

ψi(h)[k + 1] =
(

1 + τ
(
ĥ[k]− h[k]

))
· ψi(h)[k], (48)

where τ is some function of the predictive barrier value
error that satisfies the property that it is non-decreasing over
the domain. Further, it should be negative when the error
is positive and positive when the error is negative, which
translates to an increase in trust when the system evolves to
be safer than predicted and vice versa.

This trust update is performed over all active barrier
functions, which are then used to compute the aggregate trust
at this step ψi[k]. Finally, if ūi is the result of solving (43),
then let the input of robot i at this step be

ui[k] =
ūi[k]

ψi[k]
. (49)

An optimistic initial value of the trust factor is n − 1,
which implies that every robot believes that the control effort
for enforcing all barrier functions will be uniform for all
followers on the team. The selection of this value in general,
of course, depends highly on the problem setup and is left
to the designer.

Remark 4. The intuition behind the trust factor is as follows:
if robot i trusts the team more, then its individual control
action required to enforce safety should be smaller, since

Fig. 2: A block diagram detailing the zeroth-order prediction
framework as it relates to the controller. Note the completely
decentralized flow of information: robot i only requires memory
of its own inputs and observations.

other teammates will react. Conversely, lower trust means
robot i will apply a larger input to yield stronger evasive
actions. Naturally, trust should be related to the relative sen-
sor coverage of the team members: coverage overlaps should
increase trust while compartmentalized coverage should de-
crease it. Further, the trust factor should be dynamic, since
factors like visual occlusions, noise, and more may cause
rapid changes to a robot’s awareness, and therefore, the trust
dynamics, which yields an update law resembling integral
control. While the presented heuristic works well in practice,
many choices of τ result in unstable outcomes. A rigorous
analysis of the trust factor is left for future work.

V. SIMULATIONS

A. General Results and a Representative Example

A series of simulations were conducted to assess the
viability of the proposed method. Generally, the results were
favorable and the system was shown to safely navigate
around obstacles placed directly in the path of the load as
well as moving obstacles. The controller was able to operate
under a wide range of control frequencies, design parameter
choices, and number of robots on the team, though there
is a floor for how low control frequencies may become.
Throughout these simulations, there were no limits on the
control inputs, as this may yield infeasible solutions to (43).

A representative example for demonstration is depicted
in Figure 3. The system consists of a rectangular load, one
leader, and three followers. The system is initialized in the
center of the environment and tracks a circular trajectory
while avoiding static and moving obstacles. In this example,
all gains were well-tuned (c1, c2 for collision avoidance,
αv, αω for linear and angular velocity constraints) and the
robot successfully maintains a wide berth around obstacles
while regulating all three CBFs reasonably, with only mild
CBF violations and fast convergence back to safety.

It is evident from Figures 3(d)-(f) that safety violations
often occur hand-in-hand. This is an intuitive result given the



Fig. 3: Simulation results from a well-tuned 30 second run. Obstacles appear as black lines while the load is the blue square. Lasers are
shown in red and only lasers with detections are shown. The leader robot is denoted as a triangle and the followers circles. The desired
trajectory is shown in green. (a)-(c) show the overall path of the load, with (b) and (c) showing magnified views of the load near obstacles.
(d)-(f) show the values of the various barrier functions over the run. In (d), the empty sections correspond to inactive barriers (no laser
detections). The safety margins are denoted with the black dotted line. (g) shows all input forces over the run. The peak force is 412N.

nature of the desired safety constraints: evasive maneuvers
typically involve high-speed movements in order to avoid
collisions, especially when the obstacle is moving as in the
one shown in 3(b). While there are naturally tradeoffs in
enforcing each barrier function, these results suggest there
may exist some tuned parameter values that are optimal for
multiple safety objectives depending on the choice of CBFs.
However, during evasive maneuvers, forces may increase
significantly (Figure 3(g)), and if input bounds are enforced,
infeasibilities may result or large safety violations may occur.

B. Failure Modes

Many common failure modes were also observed in sim-
ulated trials. Two such cases are depicted in Figure 4. In
Figure 4(a), the inputs become unbounded with aggressively-
tuned gains and no trust factor, destabilizing the system
within 0.2 seconds. Similar and often oscillatory failure
modes were observed even when trust factors were activated
given sufficiently aggressive gains. Additionally, high pre-
diction error resulting from a low control frequency yielded
similar behavior.

Figure 4(b) demonstrates the relationship between aggres-
sive regulation of linear and angular velocity constraints
when the collision avoidance gains are poorly-tuned. Low



Fig. 4: Two cases of poor gain tuning. (a) shows instability resulting from the lack of trust factors, yielding unbounded inputs. Overly-
aggressive class-K functions αv and αω often induce similar behavior via oscillations. (b) shows an overly-relaxed selection for c1, c2
when tuning the feedback gain matrix for the collision avoidance constraint. Overly-timid tuning causes under-reactions near obstacles.

values of c1, c2 in (44) results in poor low responsiveness
to obstacles, whereas higher values yielded “rigid” behavior
with greater responsiveness at the cost of more severe linear
and angular velocity safety violations. On the other hand,
over-responsiveness was also observed to result in destabi-
lizing oscillatory behavior.

VI. CONCLUSION

This paper offers a prediction-based framework for safe
decentralized collaborative transport with an explicit team
leader who is unaware of the safety constraints of other team
members. Many qualitative insights into the team dynamics
and behavior were provided in addition to a robustness
analysis that provides criteria for the selection of design pa-
rameters. Simulations of the proposed method demonstrated
success, with common failure modes being identified.

Some possible avenues for future research include

• more accurate prediction models derived from game
theory or learning-based methods,

• rigorous analyses of the trust factor using concepts from
adaptive control theory,

• the usage of discrete-time CBFs [13] (this paper did not
explore discrete-time CBFs because guarantees on the
convexity of the optimal control problem would vanish,
and in general some scheme such as linearization of the
CBF must take place. Even with linear CBF dynamics,
the best one can hope for is a QCQP),

• the use of delay differential equation (DDE) theory to
analyze the instability or oscillations induced by the
delayed zeroth-order prediction model,

• improved perception methods that include semantic
representations of the environment, and

• the establishment of more stringent mathematical char-
acterizations of the method’s robustness.
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