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ABSTRACT

Since childhood, humans cultivate a strong intuition of physics such that after just
short observation periods, we can relatively accurately predict future trajectories.
Our goal is developing a new algorithm to reliably replicate this ability on robots.
In this report, we present the Meta-Extended Kalman Filter (MEKF), a procedure
based on classical state estimation theory that promises a computationally
efficient method for posterior inference for stochastic nonlinear latent variable
models. Using the MEKF, we can jointly recover dynamics and observation
models, jointly optimizing them using a variational inference procedure.

The MEKF algorithm draws significant inspiration from the Model Agnostic
Meta-Learning (MAML) method, which allows trains a model to maintain a set of
adaptable parameters that can easily be fine-tuned to perform well on new tasks.
In a similar vein, the MEKF seeks to learn adaptable priors over task-specific
parameters such as object mass, geometry, contact parameters, and more such that
after filtering on a given observation sequence, the model can recover a confident
belief over the parameters relevant for prediction. While MAML backpropagates
through gradient steps, the MEKF backpropagates through differentiable filtering,
smoothing, and prediction operations.

In addition to the meta-training procedure and a new learning objective, we
also introduce a parameterization of the conventional latent dynamics that treats
the task-specific parameters of interest as latent states with static dynamics.
This segregates the information pertaining to the learned universal dynamics
model from the information governing the specific dynamics of the task, and
we find that this inductive bias is key to ensuring consistent performance on
out-of-distribution and unseen tasks during test time.

The MEKF is evaluated against a single-task EKF trained on the aggregated
meta-dataset without the aforementioned dynamics reparameterization. We
find that on both quantitative and qualitative metrics, the MEKF significantly
outperforms the vanilla EKF. In particular, the MEKF is significantly more
confident while being more accurate in its predictions due to the adaptation period
and can also perform well even when given less data to filter on than during
training, showing the robustness of the method.

Division of Responsibility: Albert was responsible for writing the entire report
and also introducing the meta-learning formulation presented (all material
relevant to the course). Philipp was responsible for managing the repository
structure and the estimation API. We both worked significantly on implementing
differentiable versions of the EKF, debugging, and designing experiments to
evaluate the success of the EKF for general dynamics learning.

Access to the code is detailed in the appendix.
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1 INTRODUCTION

Modern research in robotics seeks to bring the robot out of segregated environments like the fac-
tory to more intimate ones like the kitchen, home, or hospital. One consequence of this paradigm
shift is that we expect robotic assistants to operate in close proximity to humans and in cluttered,
unstructured environments inhabited by them. Thus, the safe deployment of robots depends on
their ability to reason about purposeful or incidental contact, whether robot-human, robot-object,
or object-object. Since objects differ unboundedly in geometry, mass, chemical makeup, etc., we
would prefer to learn a general physics model and adapt it to specific cases rather than learning the
physics of each particular scenario from scratch, which is impractical and intractable. Such a setting
is appropriate for meta-learning, wherein we would like to train a model to perform well across a
variety of tasks and quickly adapt to new ones with a minimal number of examples.

In this latter regard, humans excel, possessing a remarkable ability to make accurate long-horizon
stochastic spatiotemporal predictions based on short observation periods. The natural tendency to
develop this intuition throughout childhood is so deeply biologically ingrained that the brain pro-
cesses information on dynamical prediction (e.g. position or velocity) separately from other sensory
information about object identity (e.g. color or shape), which suggests that humans maintain com-
plex internal latent dynamics models to reason about motion (Ungerleider & Haxby, 1994). We
are interested in developing an algorithm for robots that replicates this ability in order to facilitate
effective decisionmaking in highly dynamical environments.

In this report, we study a structured sub-class of contact modeling and prediction problems: rigid
objects being pushed on planar surfaces by a robotic manipulator. The objects can have varying
geometry, mass distribution, contact properties, and more. Motivated by human ability, we investi-
gate the one-shot setting, where the model first receives a sequence of observations used to deduce
relevant physical properties of an object-surface pair. Then, we provide a second short sequence of
observations on the same pair and query the model to predict future elements of the sequence up to
some desired horizon.

To that end, we propose the meta-extended Kalman filter (MEKF), an algorithm based on classical
state estimation theory that can quickly update internal belief distributions by consuming sequences
of observations, which makes it well-suited for spatiotemporal prediction. To our knowledge, this is
the first use of filtering-related techniques for meta-learning time-series prediction models.

2 RELATED WORK

The use of Bayesian filters to learn dynamical models is well-studied. For example, the decades-old
dual extended Kalman filter treats the network weights as additional states and runs two filters in
parallel to jointly estimate the weights and states using maximum likelihood estimation (Wan &
Nelson, 1996). Other works on state-space prediction have used alternative methods like dynamic
factor analysis to estimate the posterior (Raiko & Tornio, 2009). However, these methods suffer
from poor scalability in model size or observation dimension, which impedes the training of large
neural networks on high-dimensional data.

The later advent of the variational autoencoder (VAE) (Kingma & Welling, 2014) led to a resur-
gence of filter-based learning methods by allowing tractable sampling-based posterior inference.
The deep Markov model learns an inference model qψ(zt | y1:t) parameterized by a bi-RNN in addi-
tion to dynamics and observation models (Krishnan et al., 2015; 2016). The deep variational Bayes
filter utilizes a reparameterization of the dynamics to help improve gradient paths at the expense
of losing the expressiveness of models parameterized by neural networks (Karl et al., 2016). The
Kalman variational autoencoder (KVAE) uses an image autoencoder to embed observations and
associate them with a secondary latent state, learning a dynamics model on both latent states and
latent observations to disentangle the dynamics from the higher-dimensional image data (Fraccaro
et al., 2017).

There also exist several meta-learning methods for dynamical prediction. In modular meta-learning
(Alet et al., 2019), model adaptation occurs with a novel architecture search that combines rele-
vant submodules together to recover new architectures well-suited for new tasks. Attentive neural
processes (Kim et al., 2019) are a type of attention-based model that does few-shot learning on func-
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tions, constructing a predictive distribution given some input/output pairs of said function. This pro-
cedure has been successfully used for dynamical meta-learning, in particular in the object-pushing
domain (Bauza et al., 2019).

In the reinforcement learning literature, there exist a litany of model-based meta-learning methods,
such as experience-embedded visual foresight (Yen-Chen et al., 2019), a method that uses a hierar-
chical Bayes model for few-shot video dynamics adaptation, or the meta-RL method presented by
Nagabandi et al. (2019), wherein the model of interest learns to adapt to changing dynamics during
online operation by using some sequence from the past to inform the model of the expected perfor-
mance over some future horizon, and subsequently, how to adapt. In the latter method, planning and
execution are governed by a model predictive control scheme. Finally, the general model-agnostic
meta-learning method (MAML) was derived by Finn et al. (2017), which can be applied to any
general gradient-based learning method for model learning.

Despite the litany of successful filter-based learning models and recent works on dynamical meta-
learning, there do not exist any works that combine the approaches together. The focus of this work
is therefore the intersection between filters and meta-learning, and how benefits of both approaches
can be harnessed by the meta-extended Kalman filter.

3 PRELIMINARIES

3.1 THE NEURAL EXTENDED KALMAN FILTER

The information found in this section is discussed in detail by Särkkä (2013), including detailed
derivations of the update equations and extensions of Kalman filtering methods. Consider the fol-
lowing model with additive noises wt, vt drawn from arbitrary distributions:

zt+1 = f(t, zt, ut) + wt, yt = g(zt) + vt. (1)

Let the dynamics be Markovian and the measurements be conditionally independent given the state.
The discrete-time Bayesian filtering problem consists of recursively computing a distribution over
the current state given a history of observations and control inputs p(zt | y1:t, u1:t−1). If this
distribution can also be conditioned on future information, then it is called the smoothed posterior
p(zt | y1:T , u1:T ), T > t. We refer to the filtering and smoothing processes as posterior inference.

To recover the filtered posterior, we first assume knowledge of another distribution over the predicted
state given only prior measurements p(zt | y1:t−1, u1:t−1). Then, by Bayes’ rule, the measurement
update incorporates the most recent measurement, yielding

p(zt | y1:t, u1:t−1) =
p(yt | zt)p(zt | y1:t−1, u1:t−1)∫
p(yt | z′t)p(z′t | y1:t−1, u1:t−1)dz′t

, (2)

and given a stochastic dynamics model p(zt+1 | zt, ut), the prediction update forecasts the distribu-
tion at the next time step, yielding

p(zt+1 | y1:t, u1:t) =

∫
p(zt+1 | zt, ut)p(zt | y1:t, u1:t−1)dzt, (3)

which becomes the prior for the next measurement update. The process then repeats indefinitely,
continuously consuming incoming observations.

Though this computation is generally intractable, given a Gaussian prior distribution over the initial
state p(z1), the Kalman filter allows the exact analytical recovery of a distribution over the state
given a linear Gaussian system with white Gaussian noise

zt+1 = Atzt +Btut + wt, yt = Ctzt + vt, (4)

where wt ∼ N (0, Qt) and vt ∼ N (0, Rt). The resulting dynamics and observation distributions
can be written

p(zt+1 | zt, ut) = N (zt+1;Atzt +Btut, Qt),

p(yt | zt) = N (yt;Ctzt, Rt).
(5)

While the above equations imply that we can always compute one-step dynamics distributions given
the current state, the true strength of the Kalman filter is that it can compute the dynamics of the
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distribution parameters themselves without ever needing intermittent sampling. In the special case
of the linear Gaussian state space model, the Kalman filter recovers an analytical solution to the
Fokker-Planck equation, also known as the Kolmogorov forward equation, a general partial differ-
ential equation describing the time evolution of a probability density function (Särkkä, 2013). The
prediction and measurement update equations can be written

µzt|t−1 = Atµ
z
t−1|t−1 +Btut, (6)

Σzt|t−1 = AtΣt−1|t−1A
>
t +Qt, (7)

µzt|t = µzt|t−1 +Kt(yt − Ctµzt|t−1), (8)

Σzt|t = Σzt|t−1 −KtCtΣt|t−1, (9)

Kt = Σt|t−1C
>
t (CtΣt|t−1Ct +Rt)

−1, (10)

where the notation (·)ta|tb indicates a distribution parameter at time ta conditioned on observations
up to time tb and Kt is called the Kalman gain.

We can also directly recover a distribution over the observations given the current latent distribution:

p(yt | µzt ,Σzt ) = N (yt;Ctµ
z
t , CtΣ

z
tC
>
t +Rt). (11)

Crucially, this allows us to compute the likelihood of an observation without sampling-based tech-
niques like the reparameterization trick (Särkkä, 2013; Kingma & Welling, 2014), instead reasoning
entirely in terms of probability densities.

To compute the smoothed distributions, we use the iterative Rauch-Tung-Striebel smoother, an al-
gorithm that first performs filtering over the entire observation sequence, caching particular values
over the forward pass. Then, a backwards pass is conducted to adjust the filtered posteriors to be
conditioned on future observations:

µt|T = µt|t +Ks
t (µt+1|T − µt+1|t),

Σt|T = Σt|t +Ks
t (Σt+1|T − Σt+1|t)(K

s
t )>,

Ks
t = Σt|tA

>
t Σ−1t+1|t.

(12)

Now, consider once again the general nonlinear system (1). The extended Kalman filter (EKF)
uses slightly modified update equations to perform approximate posterior inference, estimating all
distributions as Gaussians. With some abuse of notation, let

At =
∂f

∂zt

∣∣∣∣
zt=µz

t−1|t−1

, Ct =
∂g

∂zt

∣∣∣∣
zt=µz

t|t−1

(13)

in the nonlinear case. Then, the update equations for the covariances and Kalman gain take the same
form, and we use new update equations for the distribution means:

µzt|t−1 = f(t, µzt−1|t−1, ut−1), (14)

µzt|t = µzt|t−1 +Kt(yt − g(µzt|t−1)). (15)

In general, the convergence of the EKF is not guaranteed. We require that the prior p(z1) relatively
accurately describes the true latent initial condition, the noises in the system are not too large, and
that error covariances remain positive-definite and bounded during operation (this last condition is
often violated by numerical error, and many stable filters have been developed in response) (Reif
et al., 1999). While we cannot control the noise characteristics of the dynamics or observation
model, we have full control over the choice of prior. Learning a sensible choice is central to the
meta-EKF formulation presented in the sequel.

Finally, we note that posterior inference with the EKF can be conducted exclusively with the dynam-
ics and observation models f and g. We choose to parameterize these models as neural networks fθ
and gφ, which are typically shallow multi-layer perceptrons with a modest number of hidden units.
Additionally, we can also directly learn the prior p(z1) as well as the dynamics and observation
covavariances Q,R, which we define collectively as β := {p(z1), Q,R}. We refer to the tuple
(fθ, gφ, β) as the neural EKF.
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In contrast, the dominant paradigm in the learning literature is the use of a third inference network,
which we denote qψ(zt | y1:T ) (Krishnan et al., 2015; Watter et al., 2015; Krishnan et al., 2016; Karl
et al., 2016; Chiappa et al., 2017; Villegas et al., 2017; Hafner et al., 2019). In these methods, the
inference model is typically hand-designed for some specific application and, crucially, separates the
inference procedure from the dynamics and observation model. This choice increases architectural
complexity, reduces parameter efficiency, and weakens the training signal afforded to fθ and gφ
during training. The neural EKF simply outsources the computations performed by the inference
network to the Kalman update equations.

3.2 A FACTORIZED VARIATIONAL LOWER BOUND FOR FILTER OPTIMIZATION

To train the neural EKF on sequences of a single task, we turn to variational inference. Consider the
problem of maximizing the likelihood of an observation sequence conditioned on a control sequence,
p(y1:T | u1:T ). We can derive a variational lower bound for this objective:

log p(y1:T | u1:T ) = log

∫
p(y1:T | z1:T , u1:T )p(z1:T | u1:T )dz1:T

= log

∫
p(y1:T | z1:T , u1:T )p(z1:T | u1:T )

q(z1:T | y1:T , u1:T )

q(z1:T | y1:T , u1:T )
dz1:T

≥ Eq(z1:T |y1:T ,u1:T ) [log p(y1:T | z1:T , u1:T )]

−DKL(q(z1:T | y1:T , u1:T ) || p(z1:T | u1:T )).

(16)

Due to the iterative nature of the Kalman filter, we would prefer to compute the bound in terms of
factorized distributions which are output by the filter one at a time rather than joint distributions,
which are harder to construct. Such a factorized bound was derived by Krishnan et al. (2016):

log p(y1:T | u1:T ) ≥
T∑
t=1

(
Eq(zt|y1:T ,u1:T ) [log p(yt | zt)]

)
−DKL(q(z1 | y1:T , u1:T ) || p(z1))

−
T∑
t=2

Eq(zt−1|y1:T ,u1:T ) [DKL(q(zt | zt−1, y1:T , ut−1) || p(zt | zt−1, ut−1))]

= Lr(y1:T , {µyi ,Σ
y
i }
s
1:T , β) + LKL(y1:T , {µzi ,Σzi }s1:T , {µzi ,Σzi }

p
1:T , β).

(17)

We can interpret this bound in terms of reconstruction and regularization as in standard variational
inference, where we define the expectations over the observation distributions as Lr and the KL
terms as LKL. Each term is a function of the observation sequence, but also sets of smoothed dis-
tributions and predicted distributions, denoted by sets with superscripts s or p respectively. The
reason we use the smoothed distributions for reconstruction is because conditioning on future in-
formation should allow for the best possible estimate of the latent state (compared to just filtering).
This not only improves the reconstruction accuracy, it also forces the best possible inferred states to
be regularized by the standalone dynamics.

Typically, this objective would be maximized using stochastic optimization and the reparameter-
ization trick, jointly learning fθ, gφ, and β. As noted in the previous section, with the EKF we
can compute distributions over observations without sampling-based approximations using equation
(11). Additionally, we can also directly compute the distributions in the KL terms without intermit-
tent sampling by using the Kalman update equations. We hypothesize that this reduces the variances
of parameter updates during the learning procedure, but have not derived any formal results com-
paring this method to the reparameterization trick.

To use the resulting dynamics model, we consider the test-time setting described in Section 1 where
we receive a short sequence of data y1:T ′ and are asked to predict future elements in the sequence.
First, we filter on the data to recover a posterior distribution over the final latent state zT ′ . Then,
given a desired prediction horizonH , we deploy the Kalman prediction update equations without the
intermittent measurement updates to propagate a predicted belief over the states zT ′:T ′+H . Finally,
we can convert these beliefs into predicted distributions over observations yT ′:T ′+H using equation
(11). At this point, we can sample any predicted observation along the trajectory or evaluate the
model using metrics like negative log-likelihood (NLL).
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4 THE META-EKF

4.1 META-LEARNING PROBLEM SETUP

We would now like to adapt the single-task EKF algorithm to the meta-learning setting. First, we
must formalize the problem and introduce the necessary vocabulary for the resulting discussion.

We define each task T as a tuple (L, H, f̄(t, zt, ut), ḡ(zt)), where L is a loss function over an obser-
vation trajectory y1:T , H is the desired prediction horizon, f̄ is the true latent dynamics governing
the evolution of a particular object-surface pair under robot control inputs ut, and ḡ is the observa-
tion model relating latent states to observations. Given a particular type of data (e.g. video frames
or positional motion capture data), the loss function will be the same across all tasks, and we also
choose to fixH during evaluation. Therefore, the tasks we consider are distinguished entirely by the
true dynamics and observation models induced by varying object-surface pairs. It is precisely these
models we seek to learn.

We would like the meta-learner to be able to quickly adapt to some task Ti drawn from task dis-
tribution p(T ) after observing on a single trajectory of length T generated from Ti. We call this
the adaptive pass. The model is tested by predicting H future elements of a partial sequence of
observations of length T ′, and we update the learned models fθ and gφ based on the test error. We
call this second stage the evaluative pass. The same procedure is repeated during meta-test time on
a held out set of trajectories from unseen and/or out-of-distribution tasks.

4.2 A DYNAMICS MODEL FOR INFORMATION SEGREGATION

There are three types of information in which we are interested: (a) universal dynamical relations
governed by the laws of physics (e.g. the general relation between force and position); (b) task-
specific parameters that characterize the unique physical interactions of a particular object-surface
pair (e.g. object mass, contact parameters, etc.); and (c) transient states that evolve according to an
unknown latent dynamics model (e.g. object position, velocity, etc.).

In the canonical single-task model-learning setting, there exists no separation between information
types (a) and (b), which are captured by the parameters θ in our model fθ. Information of type (c)
is captured by the latent state zt. In the meta-learning setting, we would like to encourage these
information types to be segregated during learning such that the task-specific parameters can change
upon observing some exemplary sequence while leaving the more general physics model intact.

One way to do this is to view the task-specific parameters as states which do not evolve over time. To
enforce this, we can explicitly divide the state space into task-specific parameters ztask and transient
states ztrant . Then, we explicitly define the dynamics for the task-specific parameters as static and
parameterize the state dynamics with a neural network:

fθ(t, zt, ut) =

[
ztask

NNθ(t, zt, ut)

]
, zt =

[
ztask

ztrant

]
. (18)

This small modification allows us to use state estimation techniques like the EKF to do task adap-
tation by filtering on observation sequences to infer the task-specific parameters while allowing the
gradient updates to learn the generalized pushing model. We note that treating unknown parame-
ters as static states is a relatively common technique, leveraged in methods like EKF simultaneous
localization and mapping (Durrant-Whyte & Bailey, 2006).

4.3 META-LEARNING WITH THE EKF

The MEKF algorithm draws inspiration from MAML. While MAML seeks to learn pre-adaptation
model parameters θ that, after fine-tuning, can perform well on some new task, the MEKF seeks to
also learn a strong prior p(z1) such that the adaptive pass can recover a confident belief distribution
over the task-specific parameters and subsequently maximize the accuracy of predictions during
the evaluative pass. MAML backpropagates through gradient descent operations and the MEKF
analogously backpropagates through Kalman filter updates.
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Algorithm 1: Meta-EKF Algorithm
Require: Task distribution p(T )
Require: Learning rate γ

1 Initialize learnable models/parameters fθ, gφ, β := {p(z1), Q,R}
2 while not converged do
3 Sample a batch of tasks Ti ∼ p(T )
4 for all Ti do
5 Sample trajectories yadapt1:T , yeval1:T ′+H from Ti
6 Execute adaptive pass with the Kalman filter:

µz1:T ,Σ
z
1:T = FILTER(yadapt1:T ; fθ, gφ, p(z1), Q,R)

7 Construct the evaluative prior p̃(z1) as in equations (19) and (20)
8 Execute smoothing stage of the evaluative pass with the Kalman smoother:

µ̃z1:T ′ , Σ̃
z
1:T ′ = SMOOTH(yeval1:T ′ ; fθ, gφ, p̃(z1), Q,R)

9 Execute predictive stage of the evaluative pass with the Kalman prediction equations:
µ̃zT ′:T ′+H , Σ̃

z
T ′:T ′+H = PREDICT (yevalT ′:T ′+H ; fθ, gφ, p̃(zT ′ | yeval1:T ′ ), Q,R)

10 Update learnable parameters using objective from equation (21) and any optimization
algorithm (vanilla gradient ascent shown here):
θ ← θ + γ∇θ

∑
i LMEKF
Ti (fθ, gφ, β)

φ← φ+ γ∇φ
∑
i LMEKF
Ti (fθ, gφ, β)

β ← β + γ∇β
∑
i LMEKF
Ti (fθ, gφ, β)

After the adaptive pass is complete, the filter will output some distribution over the latent states

µzT =

[
µtaskT
µtranT

]
, ΣzT =

[
ΣtaskT (·)

(·) ΣtranT

]
. (19)

We assume that the covariance between task-specific parameters and initial transient states is 0,
since, for example, the mass should not have any effect on the object’s initial position. Therefore, we
can extract the distribution parameters corresponding to the task-specific parameters and re-initialize
the prior during the evaluative pass as

p̃(z1) = N (z1; µ̃z1, Σ̃
z
1),

µ̃z1 =

[
µtaskT
µtran1

]
,

Σ̃z1 =

[
ΣtaskT 0

0 Σtran1

]
,

(20)

where the tilde denotes the initial distribution for the evaluative pass. We can reuse the learned
prior for the transient states, since the initial transient states for one trajectory cannot be inferred by
looking at another, assuming the trajectories are sampled independently from each other.

The “outer loop” of the MEKF procedure remains similar to that of MAML in that the universal
model parameters θ and φ are still updated with any gradient-based optimization procedure like
Adam. The main distinction is therefore in the “inner loop,” where the adaptation occurs.

One advantage of this scheme is that the universal dynamics model represented by fθ cannot be
destabilized during the adaptive pass due to the information segregation enforced by the structure of
the dynamics, whereas in MAML, a poor choice of inner learning rate can unlearn the entire model.
However, while the adaptive pass only needs to infer a small subset of the dynamics parameters, the
operations executed during filtering are more expensive than a simple gradient step in MAML.

We now formally introduce the meta-learning training objective. As described, the evaluative pass
is comprised of two distinct stages: the filtering phase and the the prediction phase. Consequently,
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the meta-learning objective can be expressed in a way similar to equation (17):

max
θ,φ,β

{
Lr(yeval1:T ′ , {µ̃

y
i , Σ̃

y
i }
s
1:T ′ , β) + LKL(yeval1:T ′ , {µ̃zi , Σ̃zi }s1:T ′ , {µ̃zi , Σ̃zi }

p
1:T ′ , β)

+ Lr(yevalT ′:T ′+H , {µ̃
y
i , Σ̃

y
i }
p
T ′:T ′+H , β)

}
= max

θ,φ,β
LMEKF
T (fθ, gφ, β).

(21)

The first two terms of this objective are the same as in equation (17) but only over the filtering
phase. The third term is a reconstruction term over the predicted distributions computed during the
prediction phase. The algorithm is summarized in Algorithm 1.

5 EXPERIMENTS

5.1 SETUP

We conducted experiments using a curated (Kloss et al., 2020) subset of the MIT Push dataset (Yu
et al., 2016), which consisted of a few thousand trajectories of 12 different object-surface pairs. We
held out one surface type for evaluation and used the remaining trajectories for training.

The data are represented by the planar position and rotation (x, y, θ) of the object, measured using
Vicon motion capture markers. The control inputs are the commanded planar position and velocity
of the manipulator as well as a contact boolean indicating whether the object would be touched.

Since the EKF is naturally adaptive any time the filter is in operation, we evaluated the MEKF versus
a regular EKF that was only trained on the aggregated training dataset and without the modification
to the dynamics model presented in Section 4.2. The main question we sought to answer was: how
much better was the adaptive ability of the meta-model when allowed to operate in a one-shot setting
rather than an aggregated single-task (“zero-shot”) setting?

5.2 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

For both methods, the dynamics and observation models were parameterized as three-layer MLPs
with 64 hidden units per layer and softplus nonlinearities. In practice, we found that adding a skip
connection between the first and last layer of the dynamics model such that we instead learned the
dynamics zt+1 = zt + fθ(t, zt, ut) was helpful for encouraging learning, as in ResNets (He et al.,
2016).

The dimensions of the transient latent state and task-specific parameters were 8 and 10 respec-
tively, chosen after some mild hyperparameter tuning. The optimization algorithm used was Adam
(Kingma & Ba, 2015) with an initial learning rate of 5e-3, an exponential learning rate decay of 0.9
every 100 iterations, and a minimum learning rate of 1e-6. The gradients were clipped at a maximum
value of 100.

Each trajectory was 50 steps long, and we chose T ′ = H such that the filtering period was the
same length as the prediction period during the evaluative pass. Additionally, we found that insti-
tuting a learning curriculum where the the length of the training trajectories were slowly increased
was helpful to stabilize learning, since before the learned models are near convergence, the numer-
ical stability of the EKF may be suspect over long horizons. Therefore, first learning on shorter
trajectories typically facilitated more consistent learning over long trajectories.

5.3 RESULTS

We evaluated our models using two numerical metrics: the negative log-likelihood (NLL) of only
the predicted portion of the held out evaluative trajectories as well as the average displacement error
(ADE) of samples of the trajectories.

We found that the MEKF significantly outperformed the EKF on both metrics, which was expected.
The EKF may in theory be able to encode cross-task information in the latent states, but the inductive
bias of the MEKF’s dynamics model should be much better at encouraging the latent space to encode
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Figure 1: Randomly chosen prediction means for the meta-EKF (left) and the vanilla EKF (right).
Dashed lines represent the filtering period and solid lines the prediction period. Blue lines are the
ground truth data and red lines the model outputs. We observe that the output means are similar
in quality, though the quantitative performance of the MEKF is significantly better than the vanilla
EKF. This suggests that our adaptation procedure recovers much better confidence over the predic-
tions and slightly better accuracy.

task-specific information. Additionally, the adaptive pass of the MEKF allows more computations
to be executed for the purpose of adaptation compared with the EKF.

Additionally, we not only tested both models on their ability to filter on 25 points and predict on 25
points, we also evaluated their ability to adapt when only allowed to filter on 5 points to predict 25.
In this secondary test, we also found that the MEKF yielded superior performance, which suggests
that the procedure for learning the task-specific parameters prior to the evaluative pass recovers
crucial information. The numerical results are summarized in Table 1.

Qualitatively, we observe that the prediction means of both methods are actually quite similar. Fig-
ure 1 shows randomly sampled true planar positions (blue) of pushed objects versus the smoothed
(dashed) and predicted (solid) model outputs (red). The means are typically aware of important
outcomes like direction changes, sudden stoppages, or cessation of applied force. This suggests
that one of the primary benefits of the new adaptation scheme presented in this report is increasing
the confidence of the prediction, which is directly related to better initial estimates of task-specific
parameters. The results in Table 1 are consistent with this viewpoint.

6 CONCLUSION AND FUTURE WORK

This report introduced the Meta-Extended Kalman Filter, a novel algorithm based on classical state
estimation theory that can be effectively applied to learn deep stochastic latent dynamics models,
and in particular, to adapt to new tasks, both in or out of the training distribution. We evaluated
the model on object pushing tasks using real motion capture data from a robot manipulator and a
collection of objects with varying mass and geometry on different surfaces.

The MEKF leverages the Kalman update equations to execute parameter-efficient posterior infer-
ence, which improves the training signal afforded to learning the dynamics model and significantly
decreases the complexity of the model architecture. Additionally, the structure of the algorithm al-
lows us to directly learn a malleable prior over both the task-specific parameters and transient states
such that after observing just a single trajectory drawn from an unseen task, it can effectively predict
a second trajectory. We observe significantly improved performance of our adaptive model over one
which tries to learn an aggregated single-task pushing model, both in quantitative and qualitative
metrics.
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NLL (F25/P25) NLL (F5/P25) ADE (F25/P25) ADE (F5/P25)
EKF -1.541 -1.281 0.199 0.211

MEKF (ours) -3.716 -3.322 0.139 0.133

Table 1: Numerical results comparing the Meta-EKF to the single-task vanilla EKF (lower is better).
F#/P# indicates the number of provided filter points and queried prediction points on evaluative
trajectories. We observe superior performance from the meta-model on all metrics and all tasks in
the held-out test set, which suggests that the adaptation period for recovering accurate beliefs over
task-specific parameters is crucial. The reported values are normalized by both trajectory length and
batch size.

Finally, due to time constraints, we were unable to evaluate our model against other time-series
prediction meta-learning models. In the future, we would like to evaluate against a larger set of
baselines and on more tasks, as well as using more comprehensive meta-learning datasets such as the
Omnipush dataset (Bauza et al., 2019). Additionally, we may explore other filter-based techniques
like the unscented Kalman filter or the particle filter, which may have other desirable properties for
filter-based dynamical prediction.
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Kuan-Ting Yu, M. Bauzá, N. Fazeli, and A. Rodrı́guez. More than a million ways to be pushed. a
high-fidelity experimental dataset of planar pushing. 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 30–37, 2016.

APPENDIX

The stripped code can be accessed at
https://drive.google.com/file/d/1GfK5YaqcHCGK00ipik-MMQlrpk8giURD/view?usp=sharing.
Note that a large portion of the codebase not relevant to this project has been removed, so some
infrastructure in the file organization may seem unnecessary. The main part of the code is in
dynamics_learning/networks. This contains the top-level parent classes for the esti-
mation API as well as the relevant child classes. In the subdirectory kalman are the default
implementations of the neural EKF while the subdirectory metalearning_models contains
the modifications for the meta-EKF. Training and evaluation scripts are located in the top-level
scripts folder. Note that both training and evaluation are stochastic, so results may not exactly
match up with the reported values even though the exact checkpoint is provided for evaluation.
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