
Continuous-Time Neural Filters for Dynamical Prediction

Albert Li, Brent Yi

I. INTRODUCTION

A. Motivation
Effective human-robot or robot-robot interactions depend

on guarantees of safety and co-agent trust. Ensuring these
characteristics in highly-dynamical environments necessi-
tates accurate predictions over meaningful time horizons.
For well-understood mechanical systems, this task is equiv-
alent to developing a suitable dynamical model using, for
example, Lagrangian dynamics. Techniques like model pre-
dictive control have deployed these prediction models with
great success, but many dynamical systems either cannot be
modeled with physics-based approaches or are governed by
physical or non-physical interactions that are too complex to
analytically model, motivating data-driven prediction.

To that end, deep neural networks have enjoyed signifi-
cant usage for probabilistic prediction modeling. However,
most neural networks are designed as discrete-time models,
whereas many time series data are naturally conceived of as
trajectories in continuous time. Additionally, many concepts
in nonlinear control theory are developed for the analysis of
continuous-time systems [1].

This paper investigates the marriage of deep neural net-
works and continuous-time spatiotemporal learning to syn-
thesize expressive nonlinear stochastic prediction models.
To do this, we propose a network architecture that learns
a Bayesian filter jointly composed of a dynamics network
and an observation network. The deep filter can observe
on data, yielding a filtered latent trajectory that can be
passed back through the observation model to reconstruct
the observations, allowing us to compute a reconstruction
loss and jointly train the models using any optimization-
based approach. Our approach is evaluated on the Van der
Pol (VDP) and pendulum dynamical systems to allow for
accurate ground truth comparisons.

B. Related Work
For time series forecasting, recurrent neural networks

(RNNs) and their variants have long been a standard choice.
RNNs maintain a set of deterministic hidden states which act
as a proxy (up to a nonlinear transformation) for the predic-
tion belief and are updated by observing on sequential inputs.
Examples of the application of recurrent networks include
predictions on human trajectories [2], financial activity [3],
and system identification [4]. Recent work such as [5] uses
common recurrent architectures in conjunction with deep
Kalman filters to learn probabilistic graphical models for
Bayesian counterfactual inference. Similarly, particle filters
have been adapted for modeling multimodal probabilistic
outcomes nonparametrically with RNNs [6].

Fig. 1: An example reference vector field (blue) and the learned
model (red). Bayesian filtering techniques can be effective in help-
ing facilitate efficient and accurate dynamics learning. Maintaining
a continuous model also has many benefits, like constant memory
scaling, infinite resolution data imputation, and compatibility with
continuous-time control theory.

A plethora of methods have emerged leveraging the ex-
pressive capacity of generative models for the specific task
of learning physical state space models from highly nonlinear
spatiotemporal data [7], [8], [9]. Most often, Bayesian mod-
els of these dynamical systems are latent variable models,
in which the observed data are conditioned on hidden latent
variables. This is a natural setting for deep dynamical predic-
tion, since the predictor can compress the high-dimensional
observed data into a low-dimensional latent dynamical model
governing the evolution of the temporal sequence.

The development of neural ordinary differential equations
(ODEs), which instead parameterize the derivative of a
continuous function, do away with the limitations of standard
discrete-time prediction models [10]. The inputs into this
network are the initial latent conditions of a dynamical
system and the output is the state of the system at some
later time. To accomplish this, the forward pass of this
network is executed using any differential equation solver
and remarkably, backpropagation can also be executed via
a time-reversed differential equation solver call using the
adjoint sensitivity method.

The benefits of neural ODEs include constant-time mem-
ory complexity as well as the freedom for the designer to
not only choose a solver suited for the specific data, but
also to adjust the solver settings as necessitated by context.
This means, for example, that a high step resolution can
be enforced during training to learn a fine representation of

the underlying vector field while a loose tolerance can be
used during runtime to improve computational speed while
leveraging the accuracy of the learned parameters.

This is especially well-suited for dynamical control.
Learning the vector field allows infinite resolution imputa-
tion, which could be useful in cases when the agent desires a
finer prediction resolution to improve safety or performance
in control (for example, if a robot enters a crowded space).
Learning can also be done even when data are irregularly
sampled or missing, which is difficult to handle in standard
learning-based methods. Finally, for safe predictive control,
formal methods like control barrier functions, which assume
access to a continuous-time dynamical model, benefit greatly
from a compatible expressive prediction model [11].

II. PRELIMINARIES

A. Discrete-Time Bayesian Filtering
Consider the following discrete-time model with additive

noise drawn from some arbitrary distribution:

zt+1 = f(t, zt) + wt

yt = g(zt) + vt.
(1)

The discrete-time Bayesian filtering problem consists of
recursively computing a distribution over the current state
given a history of observations:

p(zt | y1:t), (2)

where the notation y1:t indicates a sequence of discrete ob-
servations. To recover this distribution, assume a distribution
over the predicted state given only prior measurements:

p(zt | y1:t−1). (3)

Then, an application of Bayes’ rule allows the prediction to
be updated with the most recent measurement:

p(zt | y1:t) =
p(yt | zt)p(xt | y1:t−1)∫

z′t
p(yt | z′t)p(z′t | y1:t−1)dz′t

, (4)

where the prior distribution p(zt | y1:t−1) is the most recently
computed posterior. Though this computation is generally
intractable, the Kalman filter allows the analytical recovery
of the estimated state of a linear Gaussian system with white
noise [12]. Let the dynamics be written now as

zt+1 = Azt + wt,

yt = Czt + vt,
(5)

where wt ∼ N (0, Qt) and vt ∼ N (0, Rt). The Kalman
filter maintains a belief over the true state represented by a
mean and covariance, which are sufficient to fully describe
a Gaussian distribution. The analytical prediction and update
equations are written

µzt|t−1 = Aµzt−1|t−1,

Σzt|t−1 = At−1Σzt−1|t−1A
>
t−1 +Qt,

µzt|t = µzt|t−1 +Kt(yt − Ctµzt|t−1),

Σzt|t = Σzt|t−1 −KtCtΣ
z
t|t−1,

Kt = Σzt|t−1C
>(CtΣ

z
t|t−1C

>
t +Rt)

−1,

(6)

where for an arbitrary variable x, xt|t−1 indicates the pre-
dicted value of x at time t given measurements from times
t− 1 and earlier, while xt|t indicates the updated value of x
after taking into consideration the most recent measurement
from time t. The filter is initialized with some prior belief
over the initial state, p(z0).

For general nonlinear systems, the filtering procedure can
at best be made approximate. Many techniques exist, but the
most common one (and the one considered in this paper)
is the extended Kalman filter (EKF), wherein the dynamics
are linearized at each step in order to allow the use of the
standard Kalman filter equations.

B. Continuous-Discrete Gaussian Bayesian Filtering

Now, consider instead the following continuous-discrete
model with additive noise:

ż(t) = f(t, z(t)) + w(t),

yk = g(z(tk)) + v(tk),
(7)

where w(t) and v(t) are white noise variables drawn from
some distribution and tk indicates the time t corresponding
to some discrete index k. This model features continuous
dynamics with intermittent discrete measurements. For any
digital system (and for data with which we seek to design
models), measurements are received discretely. However, it
is still possible and often desirable to maintain a continuous
dynamical model, which motivates the above formulation.

Approximating the posterior as a Gaussian, we can con-
struct the mean and covariance dynamics, which are then in-
tegrated between the times when measurements are received.
When new data arrives, the same discrete update step as
before is executed. The continuous prediction dynamics for
this model are derived in [13] as:

µ̇z(t) = E[f(t, z(t))],

Σ̇z(t) = E[(z(t)− µz(t))f>(t, z(t))]

+ E[f(t, z(t))(z(t)− µz(t))>] + E[Σz(t)].

(8)

If the dynamics are differentiable, (8) reduces to:

µ̇z(t) = A(t)µz(t),

Σ̇z(t) = A(t)Σz(t) + Σz(t)A>(t) +Q(t),
(9)

where A(t) represents the Jacobian of f(t, z(t)).

C. Bayesian Smoothing

While a Bayesian filter computes the posterior of a state
conditioned on past and present observations, it is possible to
recover a better state estimate by leveraging future observa-
tions to refine previously computed estimates. This process is
known as Bayesian smoothing, which recovers the maximum
a posteriori (MAP) estimate of the state [13].

The discrete procedure for Kalman smoothing is as fol-
lows: first, execute the discrete Kalman filter until some final
time T . During the forward pass, the predicted and updated
values of the belief distribution parameters are cached. Then,
a backwards pass is executed beginning at time T wherein
each successively older estimate is recursively smoothed by

Fig. 2: The architecture of the continuous-time neural filter. Note the difference between the two terms composing the joint loss.

conditioning it on data from the future. These steps may be
summarized with the following equations:

µzt|T = µzt|t +Ks
t (µzt+1|T − µ

z
t+1|t),

Σzt|T = Σzt|t +Ks
t (Σzt+1|T − Σzt+1|t)(K

s
t)>,

Ks
t = Σzt|tA

>
t (Σzt+1|t)

−1.

(10)

The notation xt|T indicates a variable conditioned on all mea-
surements up to time T . Again, A represents the linearization
of the dynamics for nonlinear systems.

Like in filtering, there is an analogous continuous-discrete
Bayesian smoother derived in [13], the details of which are
summarized in the remainder of this section. Because the
measurements are discrete, the smoothing updates are also
discrete. However, the forward pass requires the computation
of an additional auxiliary continuous variable. For differen-
tiable dynamics in the interval (tk, tk+1), we have

Ċk = CkA
>, (11)

where Ck(tk) = Σ(tk), resetting with every new mea-
surement, and for nonlinear systems, A is Jacobian of the
dynamics. Let the end of the integration interval be denoted
t−k+1. Then, we cache the continuous-discrete smoothing gain

Gk = Ck(t−k+1)Σ(t−k+1)−1, (12)

which gives the following smoothing updates:

µzt|T = µzt|t +Gk(µzt+1|T − µ
z
t+1|t),

Σzt|T = Σzt|t +Gk(Σzt+1|T − Σzt+1|t)G
>
k .

(13)

D. Neural Ordinary Differential Equations

In many conventional neural network architectures such
as residual networks, complex nonlinear transformations are
compositions of transformations on a hidden state of the form

hk+1 = hk + f(hk, θk), (14)

where θk are the network parameters corresponding to the
kth hidden layer with values hk. Recent research has shown
that these operations can be interpreted as Euler discretiza-
tions with an implicit step size of 1 on some continuous

transformation [14], [15], [16]. In the limit as the step size
approaches 0 and the number of layers becomes infinite, we
obtain a network globally parameterizing the derivative of
this continuous transformation:

ḣ(t) = f(t, h(t), θ). (15)

This is the parameterization of choice for our dynamical
models, where h(t) is equivalent to our latent variable
z(t). Many dynamical prediction models that also rely on
Bayesian inference techniques use Long-Short Term Memory
(LSTM) networks to learn from discrete time-series data,
which have been used to predict outcomes like future medical
conditions [7]. Even in works like [10], which instead uses
a neural ODE-based architecture, experiments are conducted
on generative latent time-series prediction with an auto-
encoding architecture where the encoder network is again
a LSTM network that takes in the observed data in reverse
to produce an initial latent state, which is then integrated
forward in time and observed upon. The latter strategy shares
some similarities with ours.

The use of LSTMs in these applications resembles the
state estimation-based approach, but with non-optimal “mea-
surement updates” in the sense that there is no connection
between the dynamics model they use for propagating la-
tent trajectories, the encoder which “estimates” latent states
from observations, and the decoder which observes on the
estimated latent states.

As explained above, the state estimation literature suggests
that an optimal estimator should utilize both the dynamics
and observation model together to iteratively maximize the
amount of information recovered about the latent state from
each observation. This motivates our model design in the
next section.

III. CONTINUOUS-TIME NEURAL FILTERS

The continuous-time neural filter (CTNF) is composed
of two networks in contrast with the model in [10]: a
continuous dynamics model fθ(t, z(t)) and an observation
model gφ(z). A sequence of time-series data y1:T is fed
through a continuous-discrete EKF to obtain filtered belief

distributions N (µzt|t,Σ
z
t|t), t = 1, . . . , T . Next, an extended

Kalman smoothing pass is executed, producing smoothed
latent belief distributions N (µzt|T ,Σ

z
t,|T), t = 0, . . . , T .

These can be converted into approximate distributions over
the corresponding observations made on the latent beliefs

µyt|T = g(µzt|T),

Σyt|T = CtΣ
z
t|TC

>
t +Rt.

(16)

A reconstruction loss is computed by taking the averaged
negative log-likelihood of B batches of length T sequences
of data given the smoothed belief distributions:

LR = − 1

BT

B∑
i=1

T∑
t=1

log p(yt;µ
y
t|T ,Σ

y
t|T). (17)

The above procedure leverages the information gain from
intermittent updates to correct the latent state estimate each
step. However, we are also interested in learning an accurate
dynamical model f that can be used for prediction with-
out leveraging corresponding measurements. Therefore, we
additionally use (9) to integrate µ0|T ,Σ0|T up to time T
to recover predicted distributions over the latent variable
without measurement updates, N (µ̂zt , Σ̂

z
t), t = 1, . . . , T .

We can then recover distributions over the reconstructed
observations as before, yielding a prediction loss:

LP = − 1

BT

B∑
i=1

T∑
t=1

log p(yt; µ̂
y
t , Σ̂

y
t). (18)

Finally, these two losses are mixed to produce a joint loss
used for training the model:

LJ = αLR + (1− α)LP , (19)

where α ∈ [0, 1] is a tuning parameter to adjust the weight
granted to filter reconstruction versus prediction. This is
nominally set to 0.5. The model architecture is summarized
in Figure 2.

The model is also able to learn the process and mea-
surement noise. For simplicity, in the trials presented in
this paper, we choose to learn the elementwise logarithm of
the entries of a diagonal covariance matrix. This allows the
model to learn the contextual uncertainty of the environment
in which the data is collected, making its deployment in the
same environment more effective.

IV. EXPERIMENTS

A. Setup

Model performance was evaluated on two dynamical sys-
tems: the Van der Pol (VDP) system and the pendulum.
These are both highly nonlinear systems in two dimensions,
allowing easy visualization for qualitative comparison. The
VDP dynamics are written

ẋ1 = µ

(
x1 −

1

3
x31 − x2

)
,

ẋ2 =
1

µ
x,

(20)

where µ is a model parameter. The states represent planar
Cartesian coordinates. The pendulum dynamics are written

ẋ1 = x2,

ẋ2 = − sinx1 − βx2,
(21)

where β is a parameter governing frictional effects. The
states represent angular position and velocity. The training
data were generated by integrating stochastic differential
equations to recover 10000 noisy trajectories from each
dataset, each consisting of 10 datapoints collected over a
time horizon of 0.5 seconds.

The results were benchmarked against a naive discrete-
time baseline model consisting of three networks: a LSTM
network to propagate latent dynamics and two multilayer
perceptron encoder and decoder networks for converting
between latent and observation variables. These each had
a single hidden layer with 64 hidden units. 5 datapoints
were initially fed into the this network to initialize the latent
dynamics, at which point the remaining data are used as
training targets and are withheld from the network.

The dynamics neural ODE for the CTNF was a multilayer
perceptron with 3 hidden layers, each with 64 hidden units
and softplus activation functions. The observation network
was also a multilayer perceptron with 3 hidden layers, each
with 16 hidden units.

Both models were trained by minimizing the negative
log-likelihood over observation reconstructions with loss
mixing. The batch sizes were chosen to be 64. For the given
integration interval and dimensionality of the data, this was
found to be a reasonable compromise between lowering the
variance and maintaining quick training iterations. A step
scheduler was used for the learning rate, decaying it from
an initial value of α = 0.01 by a decay ratio of 0.975 every
10 steps down to a minimum of α = 1e− 4. The optimizer
of choice was ADAM.

B. Results

We report prediction negative log-likelihoods on a hold-out
validation set of 50 datapoints collected over a time horizon
of 5 seconds (i.e., the loss is computed from a sequence of
observations reconstructed without performing measurement
updates). We allow the first 5 of these datapoints to be known
by the prediction model in order to initialize it, then take
the loss over the remaining 45 datapoints. The results are
summarized in the following table and in Figures 4 and 3:

Model VDP NLL Pend. NLL
Baseline +3.95 +3.06
CTNF -2.13 +1.69

The CTNF model outperforms the baseline for both dy-
namical systems significantly. Additionally, the VDP and
pendulum results for the CTNF model are reported after 10
and 20 epochs of training respectively, while the baseline
model was trained for 200 epochs. We can see that though
the CTNF models may not have fully converged, they still
vastly outperform the baseline model with much better data
efficiency.

Fig. 3: Filtering versus prediction rollouts on the Van der Pol dynamics using the CTNF model. Green dots and red crosses represent
the start and end of trajectories respectively. Blue lines represent ground truth trajectories while red lines represent predicted trajectories
from rolling out the latent dynamics and observing upon them. A: Filtering runs on noisy measurements. In about 300 iterations, the filter
architecture jointly defined by the dynamics and observation model is good enough to be an effective real-time EKF. B: Prediction runs
on denoised validation trajectories. The yellow lines are the portion of the trajectory that is filtered and smoothed to initialize the latent
state. At first, we observe that the filtering and smoothing steadily improves in reconstructing the initial observation. In later iterations,
predictions rapidly improve since the effect of cascading errors over time is minimized.

In validation trials, we found that the CNTF is also able
to extrapolate data even when it receives measurements that
are farther in space and time than the data observed during
training. We hypothesize that this is due to two major factors:

1) The continuous-time dynamics network allows local
training on global parameters of the underlying dy-
namical vector field.

2) The smoothing operation effectively revises the initial
condition of the latent state, so any prediction which
begins at the smoothed initial condition will yield a
more accurate prediction given a correct dynamics
model.

In comparison, as shown in Figure 4, the baseline model
seems to reasonably recover the underlying latent dynamics,
but suffers from the inability to precisely recover the correct
initial observation. This suggests that there is merit in the
use of Bayesian smoothers in the CTNF prediction model,

which has no trouble almost exactly recovering the correct
initial observation, as seen in Figure 3. Additionally, the
baseline model never seems to completely converge on the
true trajectory, even after dozens of times more iterations of
training than the CTNF.

The LSTM baseline was also observed to be prone to
overfitting on the training data, and in particular, becoming
overly optimistic about the uncertainty of its predictions. This
is partially because the LSTM does not have a mathemati-
cally explicit way to relate the covariance of each prediction
with the next, which is natural in a state estimation frame-
work. Contrastly, this relation allows the CTNF to recover
covariances more compatible with the predicted observations,
yielding a superior negative log-likelihood.

It is also worth emphasizing the additional benefit that
the CTNF model allows infinite resolution data imputation,
since we have learned a continuous representation of the

Fig. 4: Forward predictions of the baseline model. Note how it generally learns the dynamics well but has trouble precisely learning the
initial condition of the trajectory, whereas the CTNF excels. The trajectories are also not precise even after tens of thousands of iterations.

latent dynamics, which means we may recover much finer
or coarser predictions while the baseline model is restricted
to the time discretization of the data upon which it trains.

V. CONCLUSION

A. Summary

This paper presents the continuous-time neural filter, a
deep learning method leveraging the properties of Bayesian
state estimation to effectively learn arbitrary nonlinear dy-
namics and observation models. In addition to demonstrat-
ing the ability of the architecture to perform filtering and
smoothing well, we also show that it is capable of performing
accurate dynamical prediction even when the inputs to the
system are spatiotemporally distant from the data used to
train the model. Additionally, the model outperforms a
baseline model implemented using a LSTM, the standard
option for time-series prediction.

While the method shows incredible promise, one detriment
is that since no assumptions are made a priori about the pa-
rameterization of the dynamics, we may recover a model that
has a latent representation that is difficult to interpret. This is
because the latent states can be highly entangled, and will not
necessarily be subsets of the interpretable observations. One
possible way to recover partially interpretable latent models
is by prescribing an expert observation model. For example,
if you would like at least two latent states to represent the
planar position of your system and the observation data give
the planar position, then you can design the observation
model to map the observations directly to the first two latent
states. This may be essential for state-space control and
stability analysis of learned dynamics.

B. Extensions and Future Work

While the CTNF was effective using an EKF, other ap-
proximate filtering methods can be explored, especially for
data that are even more nonlinear than the systems studied
here. For instance, the unscented Kalman filter [17] is another
popular alternative to the EKF that is part of a family of
filters known as sigma point filters, which have been shown
to outperform the EKF in many cases at a slight additional
computational cost.

One benefit of the UKF is that it avoids the costly com-
putation of the Jacobian of the dynamics and measurement
models during the prediction and update steps in training. To

avoid the numerical issues associated with repeatedly com-
puting matrix square roots, square root UKF implementations
also exist for the continuous-discrete setting [18]. For even
more complex or multimodal distributions, the general CTNF
framework may also permit the use of continuous-discrete
particle filtering [19].

We are also hoping to experiment with more complex
methods of learning and modeling noise and covariance.
Recent robotics research has shown that for many systems
of interest, noise is not simply independent of state, but
heteroscedastic, or dependent on the state of or inputs into
a system. Taking these types of noise into account has
been shown to yield better filtering performance, which
suggests such models would also be useful to investigate
for improving CTNF models [20].

Finally, we plan to apply CTNFs to dynamical prediction
of non-physics-based systems, such as the prediction of hu-
man trajectories or the actions of other agents in unstructured
environments. We hope to demonstrate that CTNFs can learn
effective predictions over few training examples while still
retaining high expressiveness such that they can be smoothly
integrated into control systems while allowing an avenue
for formally analyzing important properties of closed-loop
systems such as safety and stability.

REFERENCES

[1] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ:
Prentice-Hall, 2002, the book can be consulted by contacting: PH-AID:
Wallet, Lionel. [Online]. Available: https://cds.cern.ch/record/1173048

[2] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 961–971.

[3] X. Zhang, X. Liang, A. Zhiyuli, S. Zhang, R. Xu, and B. Wu, “AT-
LSTM: An attention-based LSTM model for financial time series pre-
diction,” IOP Conference Series: Materials Science and Engineering,
vol. 569, p. 052037, aug 2019.

[4] Y. Wang, “A new concept using lstm neural networks for dynamic
system identification,” in 2017 American Control Conference (ACC),
2017, pp. 5324–5329.

[5] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters,” 2015.
[6] X. Ma, P. Karkus, D. Hsu, and W. S. Lee, “Particle filter recurrent

neural networks,” CoRR, vol. abs/1905.12885, 2019.
[7] R. G. Krishnan, U. Shalit, and D. A. Sontag, “Structured inference net-

works for nonlinear state space models,” ArXiv, vol. abs/1609.09869,
2016.

[8] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled
recognition and nonlinear dynamics model for unsupervised learning,”
in Advances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 3601–3610.

[9] M. Karl, M. Sölch, J. Bayer, and P. van der Smagt, “Deep variational
bayes filters: Unsupervised learning of state space models from raw
data,” ArXiv, vol. abs/1605.06432, 2016.

[10] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” CoRR, 2018.

[11] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European Control Conference (ECC), 6 2019, pp. 3420–
3431.

[12] R. E. Kalman, “A new approach to linear filtering and prediction
problems”,” Journal of Basic Engineering, 1960.

[13] S. Särkkä and J. Sarmavuori, “Gaussian filtering and smoothing for
continuous-discrete dynamic systems,” Signal Process., vol. 93, pp.
500–510, 2013.

[14] Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neu-
ral networks: Bridging deep architectures and numerical differential
equations,” in Proceedings of the 35th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
Sweden: PMLR, 7 2018, pp. 3282–3291.

[15] L. Ruthotto and E. Haber, “Deep neural networks motivated by partial
differential equations,” Journal of Mathematical Imaging and Vision,
04 2018.

[16] E. Haber and L. Ruthotto, “Stable architectures for deep neural
networks,” Inverse Problems, vol. 34, 05 2017.

[17] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422,
2004.

[18] S. Sarkka, “On unscented kalman filtering for state estimation of
continuous-time nonlinear systems,” IEEE Transactions on Automatic
Control, vol. 52, no. 9, pp. 1631–1641, 2007.

[19] B. Ng, A. Pfeffer, and R. Dearden, “Continuous time particle filtering,”
in Proceedings of the 19th International Joint Conference on Artificial
Intelligence, ser. IJCAI’05. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005, p. 1360–1365.

[20] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, “Most
likely heteroscedastic gaussian process regression,” in Proceedings
of the 24th International Conference on Machine Learning, ser.
ICML ’07. New York, NY, USA: Association for Computing
Machinery, 2007, p. 393–400. [Online]. Available: https://doi-
org.stanford.idm.oclc.org/10.1145/1273496.1273546

