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Abstract— This paper presents replay overshooting (RO), an
algorithm that uses properties of the extended Kalman filter
(EKF) to learn nonlinear stochastic latent dynamics models
suitable for long-horizon prediction. We build upon overshoot-
ing methods used to train other prediction models and recover
a novel variational learning objective. Further, we use RO to
extend another objective that acts as a surrogate for the true
log-likelihood, and show that this objective empirically yields
better models than the variational one. We evaluate RO on
two tasks: prediction of synthetic video frames of a swinging
motorized pendulum and prediction of the planar position
of various objects being pushed by a real manipulator (MIT
Push Dataset). Our model outperforms several other prediction
models on both quantitative and qualitative metrics.

I. INTRODUCTION

A. Motivation

Humans possess a remarkable ability to make accurate
long-horizon spatiotemporal predictions based on short ob-
servation periods, even in the presence of stochasticity. This
ability is so deeply biologically ingrained that the brain
processes information on dynamical prediction (e.g. position
or velocity) separately from other sensory information about
object identity (e.g. color or shape) [1], which suggests
that humans maintain complex internal dynamics models
to reason about motion. We are interested in an algorithm
for robots that replicates this ability in order to facilitate
effective decisionmaking in highly dynamical environments.
This involves two steps: we first compute the state from
observations, then use the dynamics to predict future states.

In step 1, the robot may not directly know the state, but
instead must infer it from observations. For example, an au-
tonomous vehicle may want to infer the position and velocity
of another (state z) from camera images (observations y)
and its own actions (control inputs u). Mathematically, the
vehicle must compute the inference model p(zt | y1:t). Since
the state is unobserved, we call it latent, and presume that
the system’s evolution is governed by some stochastic latent
dynamics model p(zt+1 | zt, ut, ·) and state information is
only indirectly accessible through some observation model
p(yt | zt). We may not have exact parametric forms for
these models, even in the physics-based regime (for exam-
ple, when modeling friction), which motivates a learning-
based approach. In step 2, we want to predict long-horizon
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Fig. 1: RO is an algorithm that uses the EKF for inference and
learns long-horizon prediction models. We show our models work
on a variety of data, both synthetic and real-world.

outcomes with the above single-step dynamics, which is
naturally subject to cumulative prediction error.

Accordingly, we are concerned with two questions: (1)
what inference algorithm is best for the spatiotemporal set-
ting, and (2) how can we encourage our learning procedure to
recover dynamics that perform well even over long horizons?
It is worth noting that the inference algorithm is just a
means to learn the dynamics, since our ultimate goal is
prediction. To that end, we propose replay overshooting
(RO), an algorithm that uses the extended Kalman filter and
smoother (EKF/EKS) for inference and a loss function based
on overshooting methods (discussed in the next section),
which encourage learning long-horizon prediction models.

B. Related Work and Extant Problems

This subsection discusses three categories of relevant
prior work: conventional variational approaches for learning
spatiotemporal inference models, competing Kalman filter-
based methods, and overshooting methods.

1) Conventional Inference Models: Recall that the obser-
vation and inference models can be expressed as p(yt | zt)
and p(zt | y1:t) respectively. These models perform “inverse”
roles in the sense that they model the dependence of the
observations on the states and vice versa.

Consequently, a large body of work uses the variational
autoencoder (VAE) [2] to tractably learn some useful latent
representation of the data as well as a dynamics model
describing their temporal evolution [3], [4], [5], [6], [7],
[8]. From this perspective, the observation model acts as the
decoder and the inference model the encoder.

The hallmark of this class of methods is the introduction
of an inference network qψ(zt | y1:t) in addition to the
dynamics and observation models, which are also typically
parameterized as neural nets. As shown in [4] and studied
further in [5], in this setting the variational objective depends
mainly on the inference and observation models and the
dynamics model is relegated to a regularizer for the inference



Fig. 2: Overshooting methods. Circles indicate filtering/smoothing and squares prediction. Predicted samples are indicated by (̂·). The
overshot latents are observed upon and losses are taken in observation space. (A) Branched. k predicted states are rolled out from each
of T filtered latent distributions. (B) Sequential. n states are filtered and then k more states are predicted afterwards. (C) Replay (ours).
T smoothing steps are executed (top). The smoothed prior is used to sequentially roll out T prediction distributions (bottom).

network. Often, this makes the learned model unsuitable
for prediction because the quality of VAE reconstructions
depend only weakly on the dynamics [5].

2) Kalman Inference Models: The Kalman filter (KF)
is a type of Bayesian filter that performs efficient exact
inference for linear Gaussian state-space models, which have
linear dynamics and observation models with additive white
Gaussian noise [9]. Further, the EKF allows approximate
inference for nonlinear models by linearizing them and using
the regular Kalman filter updates. Most importantly, KFs
conduct inference using only the dynamics and observation
models, which eliminates the need for an inference network.

Many works study the use of differentiable filters trained
solely for state estimation, especially for high-dimensional
data like images [10], [11], [12], [13]. These methods do
not expressly train for prediction, but rather jointly train the
dynamics and observation models to perform good inference
when used in a Bayesian filtering algorithm. Further, they
are supervised, requiring true labels of all states for each
observation. In cases where the state is not well-defined (e.g.
the state of a human), this limits their utility, motivating an
unsupervised approach (and one designed for prediction).

The caveat is that in latent variable models, the states may
not have ready interpretations like “position” or “velocity,”
but instead represent some arbitrary features that the model
finds useful for reconstruction [2]. Thus, the scope of our
approach and others is restricted to scenarios where the goal
is planning or predicting in the observation space, possibly
aided by latent dynamics models [6], [7], [14], [15], [16].

One such approach is the Kalman variational autoencoder
(KVAE) [17], which optimizes the desired models with vari-
ational inference and performing posterior inference using
the standard KF. One limitation of the KVAE is the use of
linear ensembles to approximate all models, which allows
exact inference. RO does the reverse, learning exact nonlinear
models and using the EKF to perform approximate inference.

3) Overshooting Methods: Parallel to the study of filtering
methods are methods for learning long-horizon prediction
models, which we refer to as overshooting methods (coined
in the PlaNet paper [6]) [18], [19], [20]. These algorithms
train the dynamics model to predict multiple steps into the
future, which means the model must be accurate enough to
endure cumulative error from long rollouts.

To our knowledge, there are two types of overshooting

methods. We call the first sequential overshooting, which
uses some inference procedure on n observations to recover
a confident belief over the state, then predicts (overshoots) k
more steps, taking a loss on the overshot steps (where n+k =
T , the length of training trajectories) [18], [19]. The other
we call branched overshoot, where we infer now on T steps,
but for each of these roll out k < T prediction steps [20],
[6]. See Fig. 2 to compare these with replay overshooting.

In the case of sequential overshooting, the length-T in-
ference period is sample-inefficient, since we only compute
losses over the k overshot steps and discard the rest. On
the other hand, branched overshooting is computationally
expensive, since we must roll out k predictions for each of T
points. Further, to train the model on longer horizons, every
branch increases in length, increasing the cost. We would
like a method that does not discard useful training data and
can inexpensively train for long-horizon predictions.

C. Contributions
The contributions of this paper are (1) RO, an EKF-

based overshooting algorithm for learning strong inference
and long-horizon prediction models; (2) a surrogate objective
derived from KF properties that exceeds the performance of
models trained with a variational objective; and (3) an open-
source codebase1 with scripts for experimental duplication.

II. PRELIMINARIES

A. Kalman Filtering and Smoothing
This section presents the mathematics of Kalman filter-

ing/smoothing, summarized from [9]. Consider the following
(Markovian) dynamics and observation models:

zt+1 = f(t, zt, ut) + wt, yt = g(zt) + vt. (1)

In the KF formulation, f and g represent deterministic
dynamics and observation models and wt ∼ N (0, Qt), vt ∼
N (0, Rt) represent additive white Gaussian noises that in-
troduce stochasticity. In the standard KF, we have

f(zt, ut) = Azt +But, g(zt) = Czt, (2)

while in the EKF, f and g can be nonlinear. This gives the
following transition distribution, which will be useful later:

p(zt+1 | zt, ut) = N (f(zt, ut), Qt). (3)

1www.github.com/wuphilipp/replay-overshooting



The goal of the KF is to compute p(zt | y1:t, u1:t) =
N (µt|t,Σt|t) for t = 1, . . . , T given some choice of prior
N (µ0|0,Σ0|0), which is exact for linear models and approx-
imate for nonlinear ones. For brevity, we denote ΩF :=
{(µt|t−1,Σt|t−1)}Tt=1. This is done iteratively using two
updates. In the prediction update, we first compute p(zt |
y1:t−1, u1:t) = N (µt|t−1,Σt|t−1):

µt|t−1 = f(µt−1|t−1, ut−1), (4)

Σt|t−1 = At−1Σt−1|t−1A
>
t−1 +Qt−1, (5)

where for nonlinear systems At =
∂f(µt|t,ut)

∂µt|t
. In the mea-

surement update, we use the previous values to compute

Kt = Σt|t−1C
>
t (CtΣt|t−1C

>
t +Rt)

−1, (6)
µt|t = µt|t−1 +Kt(yt − g(µt|t−1)), (7)
Σt|t = (I −KtCt)Σt|t−1, (8)

where for nonlinear systems, Ct =
∂g(µt|t−1)

∂µt|t−1
.

In the learning setting, we have access to trajectories of
length T , so we may want a stronger form of inference,
i.e. computing p(zt | y1:T , u1:T ) = N (µt|T ,Σt|T ), which
depends on observations after time t as well. This is known
as smoothing, and there are corresponding Kalman smooth-
ing algorithms. In Rauch-Tung-Striebel smoothing, we first
perform the filtering pass above, caching certain values, then
execute an iterative backwards pass starting from time T :

Ks
t = Σt|tA

>
t (Σt+1|t)

−1, (9)
µt|T = µt|t +Ks

t (µt+1|T − µt+1|t), (10)

Σt|T = Σt|t +Ks
t (Σt+1|T − Σt+1|t)(K

s
t )>. (11)

Finally, the most likely latent trajectory can be computed
with maximum a posteriori (MAP) estimation, or solving
maxz0:T p(z0:T | y1:T ). Since the KF operates in the linear
Gaussian regime, the joint distribution over the states is a
multivariate Gaussian, so the solution to the MAP problem
is given by the solutions to T + 1 smaller MAP problems
computable with the KF: maxzt p(zt | y1:T ).

B. Learning Generative Time-Series Models
Using Kalman inference, the primary learnable quantities

are fθ, gφ, µ0|0, and Σ0|0, where θ, φ represent neural net-
work parameters. If we assume fixed noise distributions, we
may also directly learn covariances Q and R. If there are
additional networks used, for example, to perform interme-
diate operations on observations as in [10], [17], then they
may also be trained end-to-end in tandem.

As discussed in Sec. I-B, we can use the EKS in a
variational inference setting to train our models. In particular,
[6] showed that the general variational lower bound given any
time-series inference model qψ(zt) and Markovian dynamics
can be written in a factorized form as

T∑
t=1

(
Eqψ(zt) [log pφ(yt | zt)]

− Eqψ(zt−1) [DKL(qψ(zt) || pθ(zt | zt−1, ut−1))]

)
=: Lr + LKL,

(12)

where for RO, qψ(zt) = q(θ,φ)(zt | y1:T , u1:T ). Lr represents
the negative reconstruction loss, which is the sum of the
expectations over the observation likelihoods and similarly
for LKL, the negative regularization loss.
LKL attempts to make the single-step dynamics transition

similar to the variational posterior. For RO, this means
that the single-step prediction of the next state without
observations should resemble the distribution of the next state
given all observations (including future ones).

The use of the KF imposes a curious architecture: the
inference pipeline (which includes fθ and gφ) represents the
encoder q(θ,φ), while the observation model gφ represents the
decoder. In the conventional inference methods discussed in
Sec. I-B, qψ is some separate inference network that has no
relation to fθ, weakening the training signal, since fθ only
participates in the computation of LKL.

III. REPLAY OVERSHOOTING

This section discusses our main contribution: the RO
algorithm, training objectives, and implementation details.

A. The RO Algorithm and the Variational Objective

Training with replay overshooting happens in two passes:
the inference pass and the replay overshooting pass. The
inference pass is simply the execution of the smoothing
algorithm described in Sec. II-A, which gives smoothed
distribution parameters ΩS := {(µt|T ,Σt|T )}Tt=0. Note that
this is sufficient to compute Lr and LKL.

In the RO pass, we “replay” the computation of the same
distributions starting from the smoothed prior N (µ0|T ,Σ0|T )
using only the prediction update, i.e. eqns. (4)-(5), and
without the measurement update, which we refer to as the ex-
tended Kalman predictor (EKP). This yields a new sequence
of replayed distribution parameters ΩP := {(µ̄t, Σ̄t)}Tt=0,
where (µ̄0, Σ̄0) = (µ0|T ,Σ0|T ) and

µ̄t = fθ(µ̄t−1, ut−1), (13)

Σ̄t = At−1Σ̄t−1A
>
t−1 +Qt−1. (14)

Using this procedure, we now recover a set of new
variational distributions q′(zt) = N (µ̄t, Σ̄t) that in turn are
used to compute a replayed reconstruction loss:

L̄r =

T∑
t=1

Eq′
(θ,φ)

(zt) [log pφ(yt | zt)] . (15)

Now, we can construct the variational RO learning objective:

LV RO = αLr + (1− α)L̄r + LKL, (16)

where α ∈ [0, 1] weights the reconstruction loss terms.
Because the RO pass has no measurement updates, dynam-

ics errors propagate freely and the resulting training signal
depends strongly on fθ. Unlike sequential overshooting, all
data are used in the RO pass and unlike branched overshoot-
ing, we train for length T horizons in every pass.

Online deployment is simple: at time t, the robot computes
p(zt | y1:t, u1:t−1) with the EKF until t = k (the number
of observations). Then, for t > k, using just prediction



Algorithm 1 Replay Overshooting
1: Init. parameters ξ := (fθ, gφ, µ0|0,Σ0|0, Q,R)
2: while ξ not converged do
3: for batch b = 1, . . . , B do
4: ΩF = EKF (ξ) . filtering, (4)-(8)
5: ΩS = EKS(ξ) . smoothing, (9)-(11)
6: ΩP = EKP (ξ, µ0|T ,Σ0|T ) . RO, (13)-(14)
7: L = LSRO(ΩF ,ΩP ) or LV RO(ΩS ,ΩP ) . (16)/(19)
8: Update ξ with stochastic gradient ascent on L

updates, the robot computes p(zt+n | y1:t, ut+n−1), some
n-step prediction distribution that can be used for planning
(e.g. CEM [21]). The algorithm is summarized in Alg. 1.

B. The Surrogate Objective

In time-series analysis, it is well known that for linear
Gaussian models, the exact likelihood over an observation
sequence can be computed using the Kalman filter [22]:

p̃(yt) = N (Ctµt|t−1, CtΣt|t−1C
>
t +Rt),

log p(y1:T ) =

T∑
t=1

log p̃(yt),
(17)

where p̃ is a Gaussian density function and we denote eqn.
(17) as the surrogate loss, Lsl, since for nonlinear models,
this likelihood expression is approximate. Similarly, we can
also construct a replayed surrogate loss term

p̄(yt) = N (Ctµ̄t, CtΣ̄tC
>
t +Rt),

L̄sl =

T∑
t=1

log p̄(yt),
(18)

from which we can derive the surrogate RO objective:

LSRO = αLsl + (1− α)L̄sl. (19)

Note that Lsl depends on the filtered rather than smoothed
distributions, in contrast with the computation of Lr.

Since the surrogate objective acts as an approximation of
the true log-likelihood, we propose directly optimizing on it
rather than the variational objective whenever possible. This
avoids the use of high-variance sampling-based techniques
like the reparameterization trick, and further, since we are
not optimizing a lower bound, we expect to often recover
superior models with the surrogate. An experiment on a toy
example comparing both objectives is shown in Fig. 3, but
a formal mathematical analysis is left for future work.

C. Other Implementation Details

In practice, we parameterize fθ and gφ as shallow multi-
layer perceptrons and use a skip connection [23] between the
first and last layers of the dynamics network such that we
model zt+1 = zt + fθ(zt, ut). To compute the Jacobians of
fθ and gφ, we use PyTorch [24].

One caveat for the EKF is that all distributions must be
multivariate Gaussians. For data with restricted domains like
images, we borrow the KVAE architecture [17], which learns
an additional VAE to encode the original observations o into

latent observations y. We then choose the distribution over
the latent observations y and states z to be Gaussian and
jointly train the VAE with fθ and gφ. In this case, we com-
bine a variational objective to train the image autoencoder
with the surrogate to train the filter.

If T is large, RO can lead to unstable learning, since
before the dynamics converge, a long sequence of inaccurate
predictions can lead to exploding gradients [25]. Thus, we
institute a ramped learning curriculum, where trajectories
are lengthened during training from length 2 to T . By
truncating the data early on, the training remains stable and
learning on increasingly longer sequences becomes easier.
This ultimately allows stable learning on the full trajectories.

Finally, we found that in the variational setting, annealing
both the KL terms and the RO loss terms often improved
performance, since first learning a good EKF/EKS helps
stabilize the learning for the dynamics by recovering better
smoothed priors, leading to prediction rollouts with less
cascading error. As in [26], we found that adding a coefficient
β to LKL sometimes improved performance, with lower
values (β < 1) improving reconstruction quality.

IV. EXPERIMENTS

A. Overview

1) Datasets: Our model is evaluated on two different
datasets. The first is the pendulum example from [5], which
consists of sequences of synthetic noisy video frames show-
ing the motion of a swinging motorized pendulum. The
second is a subset of the MIT Push Dataset, which consists
of planar position trajectories of various objects being pushed
on surfaces of varying material by a real ABB IRB 120
robot arm. The data were collected by Vicon motion capture
cameras [27], [28]. Both datasets include fixed control inputs
for each trajectory.

2) Models: We consider four EKF-based models. Our
methods are denoted surrogate RO (SRO-EKF), variational
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Fig. 3: Typical MAP estimates for EKF models trained with the
variational vs. surrogate objective on Van der Pol dynamics. A
random (analytical) true trajectory is plotted in gold and noisy
initial observations of it in teal. The model’s best guess is in dark
purple while prediction samples are transparent. The surrogate-
trained model filters (dashed lines) without overfitting to noise,
predicts (solid lines) the true dynamics accurately, and has low-
variance samples. Over 1000 samples, the average L2 error and
95% CI was 0.518± 0.022 for VRO and 0.241± 0.010 for SRO.
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pixels (vice versa for purple). White indicates similar values. Note how the SRO-EKF (ours) produces low-error reconstructions while
other models exhibit persistent errors. Right: a typical frame from the dataset. We only visualize the pendulum mass for simplicity.

RO (VRO-EKF), and surrogate only (S-EKF). We also
consider the variational without RO (V-EKF) case, which
consists of the simple extension of conventional variational
methods to EKFs with no other modifications. All EKF
models directly learn a diagonal-covariance prior p(z0) and
diagonal time-invariant noise covariances Q and R.

We further compare these EKF models to the PlaNet
model with and without branched overshooting (NO-PN and
BO-PN respectively) [6]. All models are summarized here.

TABLE I: Experimental configurations (ours bold).

Model Description
NO-PN PlaNet model without overshooting [6]
BO-PN PlaNet model + branched overshooting [6]
V-EKF EKF + variational objective only (12)
S-EKF EKF + surrogate objective only (17)

VRO-EKF EKF + VRO objective (16)
SRO-EKF EKF + SRO objective (19)

To allow fair comparisons, we parameterize the dynamics
and observation networks as MLPs with three hidden layers
and 64 hidden units for all models. We also use the ramped
curriculum for all models to stabilize training and share
hyperparameters whenever possible.

B. Pendulum Experiments

1) Setup: The pendulum model was as follows:

θ̈ = −g
l

sin(θ)− b

ml2
θ̇ +

1

ml2
u, (20)

where m, b, l, u are mass, damping, length, and input torque.
We use a synthetic training dataset of 10,000 noisy

grayscale image trajectories with a pixel resolution of 256
along with corresponding random sequences of input torques.
The control signals are subjected to a zero-order hold
discretization at the sampling frequency of the data and
the trajectories are converted into 16 × 16 grayscale video
frames of the pendulum mass. Like in [29], we represent the
distribution over pixels as a discrete softmax distribution for
all models.

We evaluate our models on two metrics normalized by
batch size and trajectory length. First, because the joint
likelihood over image trajectories is intractable, we instead
use the negative sum of marginal log-likelihoods (NSMLL),
which computes the marginal log-likelihood of each point in
time using the EKF and sums over the trajectory. NSMLL
generally correlates well with good qualitative performance.
Second, we also take an averaged pixelwise L2 loss on the
models’ mean predictions.

2) Hyperparameters: All models use a latent dimension
of 3 and an exponential learning rate schedule with base rate
1e-3 and decay rate 0.975 per 100 steps. Surrogate-trained
models use α = 0.5 and variational models β = 2.0. PlaNet
models have an overshoot horizon of k = 2.

3) Results: Fig. 4 shows that the SRO-EKF is the
most resistant configuration to long-horizon prediction error,
whereas other models degrade at similar scales. Addition-
ally, Fig. 5 compares learned latent embeddings for SRO-
EKF vs. S-EKF. Adding RO yields smooth and structured
latent trajectories that correlate strongly to angular position
and velocity, as in [5]. In contrast, the S-EKF produces
unpredictable latent trajectories, suggesting that RO helps
regularize the dynamics.

Our three EKF models also outperform all baselines
on quantitative metrics. In particular, adding RO improves
otherwise identical configurations. We find that the PlaNet
models output overconfident predictions over pixel values,
which is heavily penalized by the NSMLL metric. How-
ever, the predicted pixel values are still close to the true
values, yielding comparable L2 performance. In other words,
our EKF models prioritize uncertainty quantification, while
methods like PlaNet prioritize mean accuracy, which may
be sufficient for good performance in deterministic physics
simulators often used in reinforcement learning.

Finally, since the observation model is extremely nonlin-
ear, only optimizing on the surrogate is demonstrably poorer
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TABLE II: Quantitative metrics for all models (lower is better). Probabilistic and L2 losses were estimated by rolling out 100 samples
and were normalized by batch size and trajectory length. F#/P# indicates the number of provided points to filter on and the following
prediction horizon. Model size refers to the number of parameters of the base dynamics and observation model. The size of the image
VAE (5,252,065 parameters) was subtracted from the reported PEND models since they used the same architecture for fair comparison.

PEND PUSH

Model NSMLL L2 × 1e-2 (avg. pixel) # of Model NLL L2 (cm) # of Model
F5/P20 F5/P40 F5/P20 F5/P40 Parameters F5/P20 F5/P40 F5/P20 F5/P40 Parameters

NO-PN 1024 1072 2.70 2.78 91,392 -7.27 -7.32 0.40 0.62 147,412
BO-PN 957 963 2.57 2.59 91,392 -6.29 -6.55 0.34 0.52 147,412
V-EKF 1148 1150 4.95 5.18 21,726 -5.58 -4.397 1.09 2.98 23,126
S-EKF 818 870 2.03 2.16 21,726 -9.83 -9.65 0.21 0.25 23,126

VRO-EKF 698 699 2.17 2.20 21,726 -6.07 -4.02 0.38 0.48 23,126
SRO-EKF 689 700 1.83 1.89 21,726 -9.66 -9.32 0.20 0.27 23,126

than with RO, since the systems is not well-approximated as
linear Gaussian. In contrast, the MIT Push experiments show
that for simpler data, the surrogate alone may be sufficient
for good performance.

C. MIT Push Experiments

1) Setup: We use a whitened curated subset of the MIT
Push Dataset from [28] consisting of around 1,600 trajecto-
ries. In each trajectory, the object geometry varies as well as
the material of the surface. No models condition on shape
or material type. We use custom control inputs consisting of
the commanded xy position and velocity of the robot end-
effector and a contact boolean value indicating whether the
end-effector should touch the object.

Since the observation trajectory can be modeled by a mul-
tivariate Gaussian, we estimate the NLL by rolling out 100
trajectories and computing the sample mean and covariance
over trajectories y1:T . We also compute an L2 loss of model
prediction means vs. the data.

2) Hyperparameters: All models use a latent dimension
of 8 and an exponential learning rate schedule with base rate
5e-3 and decay rate 0.95 per 200 steps. Surrogate-trained
models use α = 0.9 and variational models β = 0.1. PlaNet
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Fig. 6: Example model predictions comparing BO-PN (left), S-
EKF (middle), and SRO-EKF (right) on a curated set of object
trajectories on the MIT Push dataset (ours bold). Note that BO-PN
overshoots on observations y, not latent states z like in [6]. The
models’ mean prediction is in dark purple and sample rollouts are
transparent. The EKF models tend to more accurately predict the
object state, especially during sharp transitions in the trajectory,
while retaining reasonable uncertainty compared to BO-PN.

models have an overshoot horizon of k = 2. Gradient norms
are clipped at 100.

3) Results: Fig. 6 compares the branched overshoot
PlaNet model vs. our surrogate-trained EKF models. We
find that our models yield more accurate mean predictions
while also retaining reasonable uncertainty as the prediction
horizon increases, in contrast with BO-PN, which clearly
exhibits overconfidence (this conclusion is also supported by
the metrics in Table II).

We also find that our models tend to degrade much less
as the prediction horizon increases by both metrics (with
the exception of the VRO-EKF model on the NLL metric,
which we attribute to high variance from reparameterization).
On the other hand, the PlaNet models exhibit the interest-
ing behavior that the NLL performance slightly increases
upon lengthening the prediction horizon. We conjecture that
because these models are overconfident, the increase in
uncertainty with time improves the loss more than the error
in mean prediction worsens it.

We also observe that the variational models improve L2
performance after adding overshooting to the detriment of
likelihood metrics. This suggests that any type of over-
shooting may trade off mean accuracy with overconfidence.
However, we see that the use of the surrogate objective
significantly diminishes this effect, suggesting that there may
exist conditions where the addition of overshooting harmo-
nizes, rather than trades off, with reconstruction objectives.
We leave this study for future work.

V. CONCLUSION

This paper introduced replay overshooting (RO), a method
for learning inference and long-horizon prediction mod-
els from any type of time-series data using the EKF. By
construction, RO provides a strong training signal for the
learned dynamics and performs well versus baselines on
both synthetic and real prediction tasks on both quantitative
and qualitative metrics. We explored model performance
using various training objectives and generally find that the
EKF and RO provide quantitative and qualitative benefits
for prediction models. In the future, we plan to study the
integration of RO with planning-based methods for control.
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