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Abstract— The increasing integration of robots in daily life
necessitates research in multitasking strategies. The act of
juggling offers a simple platform to test techniques which may
be generalizable to more complex tasks and systems. This paper
presents both analytical and empirical results for successful
ball-juggling on the bipedal robotic research platform Cassie.
A control strategy inspired by mirror law algorithms was sim-
ulated on a simple paddle-ball system and then extended to the
Cassie-ball system in simulations and experiments, using two
low-level control schemes. A Poincaré analysis demonstrated
stability for both controllers. Both simulated and experimental
results show that the proposed strategy is robust to a wide
range of physical parameters and that the act of juggling while
balancing is achievable through multiple methods.

I. INTRODUCTION

A. Motivation

As autonomous systems are integrated into daily life, the
ability to safely and accurately perform complex dynamical
tasks in uncertain environments becomes increasingly essen-
tial. The difficulty in simultaneously completing these tasks
while also maintaining the safety of robots, humans, and the
surrounding environment has acted as a barrier to the wider
adoption of robotic technology, especially for mobile robots
with the potential to cause injury or damage.

In light of these motivations, juggling can be a useful
task to study. Unlike prehensile catching, juggling requires
interaction with an object in free fall and repeated redirection
of its trajectory to maintain a periodic orbit. The repeated
interactions between the ball and robot can also affect the
stability of the robot itself. Thus, juggling may provide useful
analogues for more generalizable methods for dynamical
multitasking in collaborative or populated environments.

B. Related Work

The simplest juggling system, a ball and a fixed planar
paddle, has been used to develop controllers that often
exhibit juggling motions similar to those observed in skilled
human jugglers [2], [14]. These techniques have been further
extended to 3-dimensional juggling [12], juggling of multiple
balls [11], and open-loop juggling through clever design of
a paddle with curved geometry [10].
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Fig. 1. Snapshots of experiments on the Cassie-paddle-ball system. Two
juggles, shown here, take 0.6 sec per bounce on average. Experimental
videos are accessible at https://hybrid-robotics.berkeley.edu/cassie-juggling.

While the paddle-ball system is effective for studying
the dynamics of ball bouncing, it is limited to the task of
juggling. Recent work with robotic juggling has incorporated
robots not designed specifically for this task. Quadrotors [7],
[4], one degree-of-freedom robots [15], and robotic arms [13]
have been used to juggle independently as well as coopera-
tively. Unlike the fixed-base robot in [13], quadrotor juggling
control has the added complexity of maintaining its height
while bouncing the ball along the desired trajectory.

C. Contributions

The focus of this paper is the implementation of juggling
control strategies on the underactuated, bipedal robotic re-
search platform Cassie, built by Agility Robotics. Cassie has
been shown to be capable of performing highly dynamical
tasks, e.g., walking on different terrains [5] and moving
on hovershoes [3]. For this problem, Cassie must maintain
balance while juggling using the same set of actuators. The
contributions of this paper with respect to prior work are:
• the characterization of the system governing the inter-

actions between the ball and robot-paddle system,
• stability analysis validating the controller designs,
• simulation of the robot-ball system using optimization-

based and PD-based approaches to simultaneously bal-
ance on two feet while juggling, and

• experiments demonstrating the validity of the controller.

D. Organization

The paper is organized as follows. Section II introduces the
dynamical models for a simple paddle-ball system which is
then extended to the robot-ball system. Section III presents
the controller design and describes two methods for main-
taining balance while juggling, followed by an analysis of
the controller stability in Section IV. Section V summarizes
simulation results for both balance methods. Section VI
details experiments on Cassie using one of the presented
juggling controllers and analyzes deviations from the mod-
eled behavior. The final section (VII) lists shortcomings with
the current implementation, conclusions, and future work.



II. HYBRID DYNAMICAL MODEL FOR JUGGLING

In this section, the dynamics for two systems – a simple
paddle-ball and the Cassie-ball system – are described. The
paddle-ball system was used to test the efficacy of the
controller on a more intuitive platform, while the Cassie-ball
system provided a realistic model for experiments.

A. Simple Paddle-Ball Model

The paddle was modeled as a floating rectangular rigid body
in SE(3) and the ball as a point mass in R3. The ball height
and velocity relative to the paddle frame, ζb, ζ̇b ∈ R, are

ζb = (xb − xp)>Re3 (1)

ζ̇b =
(

(ẋb − ẋp)>R + (xb − xp)>RΩ̂
)

e3, (2)

where xb,xp ∈ R3 are the Cartesian positions of the ball and
paddle respectively, R ∈ SO(3) is the rotation matrix from
the paddle to the world frame, Ω ∈ R3 is the paddle angular
velocity vector, ·̂ : R3 → SO(3) is the skew-symmetric
operator, and e3 ∈ R3 is the third canonical basis vector.

Contact occurs at the surface where ζp ≡ 0 and can
either be modeled as an instantaneous, rigid contact or
as a compliant-contact model. While instantaneous contact
models motivated the control architecture used in this paper,
compliant contact better represents experimental conditions.

The compliant contact between the paddle and ball was
modeled as a mass-spring-damper system. If ζp > 0, no
contact occurs, and the ball is only subject to gravitational
forces. Adapting the methods in [1], the force on the ball in
the paddle frame is given by

fn,b =
√

max{−ζp, 0} (−Gkζp −Gbζ̇p) e3, (3)

where Gk, Gb are the paddle stiffness and damping coef-
ficients. Contact is assumed to be frictionless because the
expected lateral speed and rotation of the paddle were limited
by the controller. The contact also results in an equal and
opposite force, −fn,b, on the paddle as well as the induced
moment, −R>(xb − xp)× fn,b.

Thus, for paddle inputs f ,M ∈ R3 and the contact model
from (3), the paddle-ball model is compactly written as

Σpb :


mbẍb = Rfn,b −mbge3

mpẍp = −Rfn,b + f −mpge3

JpΩ̇ = −R>(xb − xp)× fn,b
+ M−Ω× JpΩ,

(4)

where Jp is the paddle inertia matrix, mp,mb the paddle and
ball masses, and g the gravitational acceleration constant.

B. Full Robot-Ball Model

The dynamical model of Cassie is described in detail in [5].
The generalized coordinates contain the position and orien-
tation of the pelvis and the angular positions of the seven
joints for the left and right legs, respectively, written as

qrobot := [qx, qy, qz, qyaw, qpitch, qroll,

q1L, q2L, q3L, q4L, q5L, q6L, q7L,

q1R, q2R, q3R, q4R, q5R, q6R, q7R]>.

(5)

The seven joint coordinates refer to the hip roll, hip yaw,
hip pitch, knee pitch, shin pitch, tarsus pitch, and toe pitch
respectively. Only q1, q2, q3, q4, and q7 are actuated, while
q5 and q6 are passive, moving subject to springs in the leg.

Cassie is modeled with two contact points per foot, where
the force at each point is modeled like the stick/slip model
in [1]. The normal ground deformation during contact, ζg ,
is defined similarly to ζp in the paddle-ball model. The
magnitude of the foot-ground contact force, fn,g , is likewise
computed similarly to ‖fn,b‖.

For ground stiffness and damping coefficients Γk,Γb,
tangential ground deformation ξg , coefficient of friction µ,
and planar foot velocity ẋfoot ∈ R2, the stick/slip forces
tangential to the ground are fstick, fslip ∈ R2, given by

fstick =
√

max{−ζg, 0} (−Γkξg − Γbẋfoot) (6)

fslip = fstick ×
µfn,g
‖fstick‖

, (7)

where fslip is only computed for nonzero fstick. The fric-
tional force ffriction = fslip when ||fstick|| > µfn,g , and
ffriction = fstick otherwise. The total contact force is then

fC =

[
ffriction

fn,g

]
. (8)

Because the paddle was mounted rigidly to Cassie’s pelvis,
the transformation from the robot to the paddle is known and
the paddle-ball model was easily integrated with the robot
model. Thus, using the same implicit switching condition as
in (4), the complete Cassie-ball dynamics are

Σcb :


mbẍb = Rfn,b −mbge3

M(q)q̈ + H(q, q̇) = Bu + Js
>(q)τs

+ JC
>(q)fC

+ Jb
>(q)fn,b,

(9)

where M(q) is the mass matrix, H(q, q̇) contains the
Coriolis and gravity terms, B is the motor torque matrix,
u ∈ R10 is the vector of the input torques for all actuated
joints, Js(q) is the spring coordinate Jacobian, τs is the
spring torque vector, JC(q) is the ground contact position
Jacobian, and Jb(q) is the ball contact position Jacobian.

III. FEEDBACK CONTROL FOR JUGGLING

The control strategy based on the dynamics from the previous
section was inspired by mirror algorithms, a family of
control algorithms that exhibit stable juggling of a ball to
a desired apex [2].

This strategy employs a transformation between the ball
trajectory and the desired paddle trajectory. In successful
juggling motions, e.g., in human juggling [14], the paddle
moves downward mirroring the upward motion of the ball
and vice versa, with the magnitude scaled based on the error
in the desired energy of the ball. This energy-based method
helps to “servo energy” into the ball as described in [2] for
a simple actuated paddle. It was also implemented in [9]
for robotic walking. In addition to the vertical motion of the
paddle, its attitude may be independently adjusted to bounce



the ball to reach desired planar positions. Hence juggling
can be accomplished by constraining the desired pose of the
paddle to be a function of the current and desired position
of the ball. This is similar to virtual constraints [5] where a
wrench on the paddle enforces the virtual constraint.

First validated on the simple paddle-ball system described
in (4), this strategy was then implemented on the Cassie-
ball system, described in (9), in simulation using a ground
contact force optimization-based scheme presented in [8].
Another controller was developed as a benchmark for the
contact force optimization controller, using the same high-
level juggling controller with a different low-level motor
torque controller modified from the balancing controller
presented in [5].

A. Juggling Controller

The juggling controller carries out two goals: to control the
vertical motion of the paddle to modulate the height of the
ball and to control the attitude of the paddle to move the ball
to a desired planar position. The output of the controller is
a desired wrench which is applied to the paddle.

The force component is the sum of a feedforward term
fff = −kff ,ηmp g to compensate for the weight of the paddle
and a feedback term, ffb, such that

fxfb = −kxP exp − kxD ėxp (10)

fyfb = −kyP eyp − k
y
D ėyp (11)

fzfb = −kzP
(
ezp + kW (xzb − zC)

)
− kzD

(
ėzp + kW ẋ

z
b

)
,

(12)

where ep is defined as the position error between the center
of mass of the paddle and the desired contact position, zC
the desired contact height, and xb,xp the current ball and
paddle positions. In practice, the desired contact position was
chosen to keep the paddle under the desired apex.

The gain kW = kff ,η−kP,η (ηdes−η) is also the sum of a
feedforward term, kff ,η , the nominal relation between the ball
and paddle energies, and a feedback term, −kP,η (ηdes−η),
which changes proportionally to the error in the energy of
the ball. Only the vertical mechanical energy was used in the
calculation of η, ηdes, which are then written as

ηdes = −mb g x
z
apex (13)

η = −mb g x
z
b +

1

2
mb (ẋzb)

2
. (14)

The moment to be applied to the paddle drives the paddle
orientation R, with respect to the inertial frame, to the
desired orientation Rdes, and is likewise the sum of a
feedforward term, Mff , and a feedback term, Mfb, where

Mff = Ω× JpΩ (15)

− Jp(Ω̂R>RdesΩdes −R>RdesΩ̇des)

Mfb = −kR eR − kΩ eΩ. (16)

Since the robot-paddle transformation is a translation, the
pelvis and paddle orientation are equivalent. The desired
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Fig. 2. Control framework relating the high-level juggling controller on
the paddle, the low-level torque controller on Cassie, and the perception via
motion capture.

pitch and roll are computed by PD for ball error eb between
the ball position xb and the desired apex position xapex as

φdes = kP,φ e
y
b + kD,φ ė

y
b (17)

θdes = −(kP,θ e
x
b + kD,θ ė

x
b ). (18)

The desired rotation matrix is then defined as

Rdes = Ry(−φdes) Rx(θdes), (19)

where Rx(·) and Ry(·) are rotation matrices corresponding
to rotations about the x and y axes, respectively.

The moment feedback in (16) is derived from a feedback
law presented in [6], where Ω is the paddle angular velocity
vector and the attitude errors are

eR =
1

2
(Rdes

>R−R>Rdes) (20)

eΩ = Ω−R>RdesΩdes. (21)

This high-level control architecture for regulating the pose
of the paddle is implemented using two different low-level
controllers on Cassie suitable for multitasking juggling and
balancing, described in the following sections.

B. Contact Force Optimization Controller

For the desired wrench on the paddle described in (10-
12) and (15-16), juggling while balancing was achieved by
optimizing ground contact forces. Specific details of the
optimization-based controller are found in [8], but the salient
points and modifications are summarized in this section.

Grasping methods consider the net wrench produced by a
set of contact points on an object. Each of these forces must
satisfy the positivity restriction, i.e., the contact points push
but do not pull. Contact is also governed by a Coulombic
friction model. The resulting set of allowable contact forces
at point i creates a friction cone centered about the axis along
the surface normal:

Fi =

{
fi ∈ R3

∣∣∣∣√(fxi )2 + (fyi )2 ≤ µfzi , fzi ≥ 0

}
. (22)

A grasp map G is computed to transform the vector of
contact forces on the object fC to a resultant wrench f . Each
column of G is a contact map that transforms the contact



force at a single point to a wrench in the object coordinate
frame [8]. The total wrench on the object f is thus GfC.

The contact forces fC can be computed as the product
of the pseudoinverse of the grasp map G† and the desired
wrench f . In general, this calculation does not guarantee the
aforementioned constraints are satisfied, so a multi-objective
optimization problem is solved subject to these constraints.
The first two terms (J1, J2) ensure forces and moments
generated on the paddle from the contact forces at the feet
are close to the desired values computed by the high-level
controller, while the third (J3) minimizes the magnitude of
the contact force, and are written as

J1 =
∥∥[I3 03×3

]
(f −GfC)

∥∥2

2
(23)

J2 =
∥∥[03×3 I3

]
(f −GfC)

∥∥2

2
(24)

J3 = fC
>fC. (25)

For weights αi > 0, a single objective function is written as

J = α1J1 + α2J2 + α3J3. (26)

To prioritize balance, α1 � α2 � α3.
Finally, contact wrenches fk at each contact point k

are constructed using these forces, which then allow the
computation of the joint torques τ required to achieve the
desired contact forces as

τ = JC
>fC (27)

C. PD Torque Controller

While the presented contact force optimization controller
works in simulation, a simpler joint PD controller from [5]
was also explored for this task. As in the optimization-
based controller, the attitude of the paddle locates the ball
in the plane while the vertical motion of the paddle is used
to regulate the energy of the ball. The desired attitude is
controlled according to (17), (18).

In contrast to the optimization-based controller, the ground
contact forces are computed to modulate the length ` of the
virtual leg, defined from Cassie’s hip to its toe [5], to control
the vertical height of the ball. For a desired contact height
zC as in (12) and vertical offset between the paddle and hip
hoff , the desired leg length is

`des = −kW (xzb − zC)− hoff + zC . (28)

The motor torques can then be computed using the bal-
ancing controller presented in [5] with the modification that
the control law for both hip pitch motors, q3, is

q3 = −kP,3(φ− φdes)− kD,3φ̇. (29)

Balance was maintained by setting the virtual leg angle, i.e.,
the angle between the vertical axis and the virtual leg, to
zero. Thus, the center of mass of the robot was constrained
over the support polygon formed by the feet placed squarely
on the floor.

The stability of these controllers is detailed in the next
section, followed by simulation and experimental results.

IV. STABILITY ANALYSIS

Stability of the controller described in the previous section
was determined by Poincaré analysis of the Cassie-ball
system. A Poincaré section S was defined at the apex of
the ball trajectory, i.e., ẋzb ≡ 0. The return map P : S → S
is defined by the continuous dynamics described in (9).

By choice of the Poincaré section, the system passes
through three phases: free-fall of the ball until impact with
the paddle, collision dynamics between the ball and the
paddle, and the ball leaving the surface of the paddle until
it reaches its apex. The complexity of modeling the system
dynamics of the robot and the effects of repeated interactions
between the robot and ball required simulating the Cassie-
ball dynamics to identify a periodic orbit for a chosen xzapex.

Kinematic constraints on the system resulted in a lower-
dimensional return map. Individual states were first perturbed
and then the constraints were enforced before running the
forward simulation. Of the 54 states, 40 describe Cassie,
6 describe the motion of the ball, and 8 determine deforma-
tion of the ground and paddle. Since a state on the Poincaré
section must satisfy several constraints, such as the ball being
at its apex, feet being in contact with the ground, and the
paddle not being in contact with the ball, the number of
perturbable states was reduced to 17. Therefore, the Poincaré
map P is reduced to

x[k + 1] = P (x[k]), (30)

where x ∈ R17 is the vector of perturbable states. This map
was computed using the finite differences method about the
chosen fixed point for both juggling controllers. The largest
eigenvalue magnitudes for the optimization controller and
for the PD controller were 0.65 and 0.84, respectively. Thus
both controllers are locally exponentially stable.

V. SIMULATIONS

To evaluate these controllers, juggling was simulated on the
robot-ball system. All simulation results presented here were
performed in Matlab R2019b on a Lenovo Thinkpad X1
Carbon laptop (Intel Core i7 CPU, 16 GB RAM).

For stationary juggling, only the position states of the
ball relative to the position of the paddle were varied.
For an inertial frame set on the ground below the paddle
center, the chosen ball initial conditions in meters were
(0.05, 0.075, 1.3), (0.05, 0.075, 1.0), (0.05, 0.075, 1.6). Of
the many initial conditions tested, these were deemed suffi-
cient for verifying the robustness of the juggling controller.
The desired apex was (0, 0, 1.3), so the proposed controllers
were tested for initial configurations when the ball was
displaced from the apex position along all three axes.

For both controllers, the resulting trajectories converged to
a stable juggling pattern on the order of 10 bounces (Fig. 3).
Over a four-second period, all trajectories generated with
the optimization controller converged to periodic bouncing
within 8 cm of the desired apex height and within 2 cm of
the desired planar x and y positions. Over the same period,
all trajectories generated using the PD controller converged
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Fig. 3. Simulation of the Cassie-ball system with the contact force
optimization controller. The ball is dropped from three different initial
heights (z0 = 1.0, 1.3, 1.6m). In all three cases, the desired apex height is
1.3m, the ball apex settles to within 0.08m of the apex, and the planar
ball position converges to zero. The simulation with the PD controller shows
similar results. The subscript “e” denotes error.
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Fig. 4. Experimental set-up for the Cassie-paddle-ball system. The Cassie
robot is the bipedal robotic research platform developed by Agility Robotics.
The racket is a standard tennis racket. The ball is a standard racquetball
covered in reflective tape.

to periodic bouncing within 2 cm of the desired apex height
and within 3 cm of the desired planar positions.

For both controllers, periodic juggling was also achieved
when the mass of the ball was varied from 0.04 kg, the
mass of a racquetball, to 0.8 kg, twice the mass of a soccer
ball. Other physical parameters including the stiffness and
damping coefficients for contact and the friction coefficient
for robot-ground contact were evaluated.

Surprisingly, the contact force optimization controller pro-
duced similar or less well-controlled trajectories than the PD
controller. This may be due to difficulties interpreting the
contact force optimization controller gains, which include all
parameters related to the optimization algorithm and gains
governing the feedback forces and moments along all axes.
In contrast, the PD controller was governed by fewer gains,
so brief tuning produced desirable results. Thus, the PD
controller was used in experiments. However, performance
for both controllers was still sensitive to gain variations, and
the large dimensionality of the parameter spaces prevented
an exhaustive gain optimization.

VI. JUGGLING EXPERIMENTS ON CASSIE

Having demonstrated success in simulation, the PD controller
presented in Section III was implemented on Cassie.

A. Setup

A tennis racket rigidly fixtured onto the pelvis was chosen
to juggle a racquetball of mass 40 g, shown in Fig. 4.
The rigidly-mounted racket demonstrated isotropic contact
properties at a low weight. Several trials were also conducted
using other paddles. A rectangular 3D-printed paddle was
tested, but exhibited a poor coefficient of restitution between
the ball and paddle and poor isotropic properties along its
planar axes. Wooden blocks were used in an attempt to
promote more uniform contact properties, but exhibited poor
flatness while greatly increasing the weight. Despite these
inconsistencies, each paddle achieved at least ten juggles,
demonstrating the controller’s robustness to uncertainties in
physical properties.

The ball was sensed using nine OptiTrack Prime 17W
motion capture cameras which published an estimated po-
sition through ROS to the computer onboard Cassie via
UDP at a rate of 200 Hz. The ball was covered in 3M 7610
reflective motion capture tape, which slightly decreased its
coefficient of restitution. The control loop ran onboard Cassie
in Simulink Real-Time at a rate of 2000 Hz.

For each experiment, the desired planar ball position was
set to a point above the planar center of the paddle, and
juggling was initiated by releasing the ball from rest.

B. Results

The planar position of the ball was maintained in a stable
region for multiple bounces, although the desired apex was
typically overshot. The typical failure mode was the ball
drifting outside of the planar region Cassie could reach while
maintaining its balance.

Juggles of twenty, thirty, and forty bounces were achieved
several times. In the most successful observed run, Cassie
was able to juggle the ball 42 times (Figs. 5, 6). This run
failed due to ball-racket contact on the raised edge of the
racket frame, which was considered acceptable since this
geometry was not modeled in simulations. Other runs of over
forty juggles showed a similar failure mode.

VII. CONCLUSION

This paper has presented an implementation of juggling
control strategies on the bipedal robot Cassie and addressed
the challenge of balancing while juggling a ball to a desired
periodic orbit. After guaranteeing stability and validating the
presented strategy in simulation, a juggling controller was
tested online, where Cassie achieved over 40 bounces.

The proposed strategy is one of the simplest for juggling.
This simplicity resulted in instances of undesirable behaviors
that were addressed through careful gain tuning but could be
handled with a more complex control strategy. For example,
the attitude of the paddle is linear with the planar position
and velocity errors, which is only roughly accurate for small
displacements.

Motion capture was the primary method of perception,
which limited experiments to motion capture spaces. Other
means of perception, such as on-board depth cameras,
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Fig. 5. Transient behavior for the PD controller in experiments. Over a 4-
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behavior to the simulations and consistently overshot the apex.
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RGB cameras, or LiDAR, would allow juggling in any set-
ting. Furthermore, our controller assumes the robot remains
standing, limiting the range within which Cassie can juggle
to the base of support. By implementing juggling while
walking, Cassie could juggle more complicated trajectories
and recover from more dynamic initial conditions.

Future work includes extending this control strategy to
allow juggling while walking or juggling multiple balls. Col-
laborative juggling with moving humans or robots may also
be a possible avenue for exploration and could incorporate
more novel decision-making strategies.
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